There are increasing evidences supporting the involvement of oxidative stress and neuroinflammation in schizophrenia. Vinpocetine, a nootropic phosphodiesterase-1 inhibitor, was proven to possess anti-oxidant and anti-inflammatory potentials. This research aimed to reveal the likely protective features of vinpocetine against ketamine-induced schizophrenia-like deficits in rats. Additionally, the probable mechanisms contributing to this neuroprotection were also elucidated. Vinpocetine was given (20 mg/kg, i.p.) once a day for 14 days commencing 7 days before administrating ketamine (25 mg/kg i.p.). Risperidone was applied as a reference antipsychotic. Vinpocetine pre-treatment revealed a marked amendment in the hyperlocomotion, anxiety, and short-term memory deficits induced by ketamine in rats. In rats' hippocampus, ketamine induced a drastic increase in tissue levels of dopamine, lipid peroxidation, and pro-inflammatory cytokines along with a significant decrease in glutamate, GABA, SOD, and total anti-oxidant capacity. Also, ketamine induced a reduced level of BDNF together with the potentiation of GSK-3β/β-catenin pathway that led to the destruction of β-catenin. Pre-treatment of ketamine-challenged animals with vinpocetine significantly attenuated oxidative stress, inflammation, and neurotransmitter alterations. Vinpocetine also elevated BDNF expression and prevented ketamine-induced stimulation of the GSK-3β/β-catenin signaling. This research presents enlightenments into the role of vinpocetine in schizophrenia. This role may be accomplished through its effect on oxidative stress, inflammation as well as modulating BDNF and the GSK-3β/β-catenin pathway.
Nephrotoxicity is one of the serious undesirable effects related to doxorubicin (DOX). Herein, we have investigated the potential protective effect of irbesartan (IRB) against chronic nephrotoxicity induced by DOX, and the implication of different mechanistic pathways underlying these effects. Rats were treated with either DOX (2.5 mg/kg i.p., 3 times/week) for 2 weeks, and (or) IRB (40 mg/kg, daily) for 3 weeks. IRB prohibited nephrotoxicity induced by DOX, which was evident by the increase in blood urea nitrogen and creatinine levels and histopathological changes. IRB improved DOX-induced alterations in oxidative status by diminishing lipid peroxidation and upregulating the antioxidant enzymes. Also, upon DOX treatment, the renal expression of tumor necrosis factor-α, interleukin-6, and caspase-3 were significantly increased; IRB diminished DOX-induced alterations in these parameters. Moreover, DOX significantly decreased the expression level of AMP-activated protein kinase (AMPK). Meanwhile, DOX induced activation of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt/PKB) and mammalian target of rapamycin (mTOR) pathways that cross talked with AMPK. On the contrary, IRB successfully counterbalanced all these effects. Collectively, these outcomes suggest that the modulation of AMPK, PI3K, Akt, and mTOR pathways plays a critical role in conferring the protective effects of IRB against DOX nephrotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.