The current study aimed to investigate the potential protective role of boswellic acids (BAs) against doxorubicin- (DOX-) induced hepatotoxicity. Also, the possible mechanisms underlying this protection; antioxidant, as well as the modulatory effect on the Nrf2 transcription factor/hem oxygenase-1 (Nrf2/HO-1) pathway in liver tissues, was investigated. Animals were allocated to five groups: group 1: the saline control, group 2: the DOX group, animals received DOX (6 mg/kg, i.p.) weekly for a period of three weeks, and groups 3–5: animals received DOX (6 mg/kg, i.p.) weekly and received protective doses of BAs (125, 250, and 500 mg/kg/day). Treatment with BAs significantly improved the altered liver enzyme activities and oxidative stress markers. This was coupled with significant improvement in liver histopathological features. BAs increased the Nrf2 and HO-1 expression, which provided protection against DOX-induced oxidative insult. The present results demonstrated that BAs appear to scavenge ROS and inhibit lipid peroxidation and DNA damage of DOX-induced hepatotoxicity. The antioxidant efficacy of BAs might arise from its modulation of the Nrf2/HO-1 pathway and thereby protected liver from DOX-induced oxidative injury.
This study pointed to estimate the possible protective impacts of candesartan and/or epigallocatechin‐3‐gallate (EGCG) against gentamicin‐induced nephrotoxicity. The current work revealed that gentamicin significantly elevated relative kidney weight and the serum level of creatinine and urea. Also, renal level of malondialdehyde was significantly increased with a concurrent decrease in renal glutathione‐S‐transferase and superoxide dismutase activities. Moreover, renal levels of nuclear factor‐kappa B (NF‐κB) and p38 mitogen‐activated protein kinase (p38‐MAPK) were increased together with the elevation of tumor necrosis factor‐alpha and interleukin‐1 beta levels after gentamicin treatment. In addition, caspase‐3 expression was elevated, and histological examination revealed extreme alterations enlightening inflammation, degeneration, and necrosis. Pretreatments with candesartan and/or EGCG attenuated gentamicin‐induced nephrotoxicity. Importantly, the altered expression of p38‐MAPK and NF‐κB may play a significant role in the protective mechanisms exerted by candesartan and EGCG. Coadministration of candesartan and EGCG exhibited more profound response compared with the monotherapy.
There are increasing evidences supporting the involvement of oxidative stress and neuroinflammation in schizophrenia. Vinpocetine, a nootropic phosphodiesterase-1 inhibitor, was proven to possess anti-oxidant and anti-inflammatory potentials. This research aimed to reveal the likely protective features of vinpocetine against ketamine-induced schizophrenia-like deficits in rats. Additionally, the probable mechanisms contributing to this neuroprotection were also elucidated. Vinpocetine was given (20 mg/kg, i.p.) once a day for 14 days commencing 7 days before administrating ketamine (25 mg/kg i.p.). Risperidone was applied as a reference antipsychotic. Vinpocetine pre-treatment revealed a marked amendment in the hyperlocomotion, anxiety, and short-term memory deficits induced by ketamine in rats. In rats' hippocampus, ketamine induced a drastic increase in tissue levels of dopamine, lipid peroxidation, and pro-inflammatory cytokines along with a significant decrease in glutamate, GABA, SOD, and total anti-oxidant capacity. Also, ketamine induced a reduced level of BDNF together with the potentiation of GSK-3β/β-catenin pathway that led to the destruction of β-catenin. Pre-treatment of ketamine-challenged animals with vinpocetine significantly attenuated oxidative stress, inflammation, and neurotransmitter alterations. Vinpocetine also elevated BDNF expression and prevented ketamine-induced stimulation of the GSK-3β/β-catenin signaling. This research presents enlightenments into the role of vinpocetine in schizophrenia. This role may be accomplished through its effect on oxidative stress, inflammation as well as modulating BDNF and the GSK-3β/β-catenin pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.