Leptospirosis is one of the most extended zoonosis worldwide and humans become infected most commonly through contact with the urine of carrier animals, either directly or via contaminated water or soil. The aim in this study was to analyse the epidemiological behaviour of Leptospira spp., from domestic animals around the sites of human leptospirosis cases in Nicaragua, from 2007 through 2013. We report the results of a cross-sectional epidemiological study with a non-probability sampling of blood (n=3050) and urine (n=299) from Domestic Animals (DA) around the sites of human leptospirosis cases in Nicaragua. We analysed data obtained through Microscopic Agglutination Test (MAT), in-vitro culture, real time PCR and sequencing of lfb1 locus. Frequencies of 30.31% (95% CI: 28.66-31.95) and 15.38% (95% CI: 11.12-19.64) were obtained from serological test and from in-vitro culture, respectively. Although similar frequencies from serology test (P≥0.05) were found in DA species, in-vitro culture frequencies were significantly higher from bovine, equine and sheep (P<0.05) in comparison with swine and canine species. Ten serogroups of pathogenic Leptospira spp. were encountered, with the highest presence of Icterohaemorrhagiae serogroup 34.65% (95% CI: 29.35-39.94). We identified 7 samples homologous to L. interrogans species Pyrogenes serovar and 3 samples as L. noguchii Louisiana or Panama serovars by analysis of lfb1 sequences. We were able to establish a temporal and spatial correlation from DA and cumulative incidence of human cases. Therefore an effective epidemiological surveillance should be implemented with a specific control program toward DA in order to reduce human leptospirosis incidence.
The high sensitivity of qPCR makes it a desirable diagnostic method in epidemiological surveillance programs. However, due to high costs, the use of pooling has been suggested. In this paper, an algorithm based on the Montecarlo method has been designed and implemented. The algorithm had been tested in many different situations, and finally it was validated with a real dataset. Moreover, based on the results obtained and depending on pooling conditions, a drastic decrease of sensitivity is observed.
Growing global concerns about antibiotic resistance have generated a considerable interest in the search for alternative environmental-friendly approaches. This study was aimed to assess the antimicrobial activity of a multi-citrus extract-based feed additive (Biocitro ®) against some fish pathogens, as well as evaluate its capacity to protect rainbow trout (Oncorhynchus mykiss) to lactococcosis. A broth dilution method was used to determine the minimum inhibitory concentration (MIC) of Biocitro ® , and the results showed a strong antibacterial activity against Aeromonas salmonicida, Lactococcus garvieae and Yersinia ruckeri with MIC values of 2.0 µg/mL. Afterwards, rainbow trout juveniles were fed a Biocitro ®-enriched diet (750 mg/kg feed) at a daily rate of 1.5% body weight for 4 weeks, then they were challenged with L. garvieae by the cohabitation method. At the end of the experimental period, fish treated with Biocitro ® showed significantly (P < 0.001) improved protection against L. garvieae compared to control fish. Although further studies are needed to understand how Biocitro ® increases rainbow trout resistance to L. garvieae, this feed additive could be considered as a useful alternative to chemotherapeutic treatment in aquaculture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.