The physical process whereby a carbon-oxygen white dwarf explodes as a Type Ia supernova (SN Ia) remains highly uncertain. The degree of neutronization in SN Ia ejecta holds clues to this process because it depends on the mass and the metallicity of the stellar progenitor, and on the thermodynamic history prior to the explosion. We report on a new method to determine ejecta neutronization using Ca and S lines in the X-ray spectra of Type Ia supernova remnants (SNRs). Applying this method to Suzaku data of Tycho, Kepler, 3C 397 and G337.2−0.7 in the Milky Way, and N103B in the Large Magellanic Cloud, we find that the neutronization of the ejecta in N103B is comparable to that of Tycho and Kepler, which suggests that progenitor metallicity is not the only source of neutronization in SNe Ia. We then use a grid of SN Ia explosion models to infer the metallicities of the stellar progenitors of our SNRs. The implied metallicities of 3C 397, G337.2−0.7, and N103B are major outliers compared to the local stellar metallicity distribution functions, indicating that progenitor metallicity can be ruled out as the origin of neutronization for these SNRs. Although the relationship between ejecta neutronization and equivalent progenitor metallicity is subject to uncertainties stemming from the 12 C + 16 O reaction rate, which affects the Ca/S mass ratio, our main results are not sensitive to these details.
Surveys have shown that super-Earth and Neptune-mass exoplanets are more frequent than gas giants around low-mass stars, as predicted by the core accretion theory of planet formation. We report the discovery of a giant planet around the very-low-mass star GJ 3512, as determined by optical and near-infrared radial-velocity observations. The planet has a minimum mass of 0.46 Jupiter masses, very high for such a small host star, and an eccentric 204-day orbit. Dynamical models show that the high eccentricity is most likely due to planet-planet interactions. We use simulations to demonstrate that the GJ 3512 planetary system challenges generally accepted formation theories, and that it puts constraints on the planet accretion and migration rates. Disk instabilities may be more efficient in forming planets than previously thought.
Current Type Ia supernova (SN Ia) models can reproduce most visible+IR+UV observations. In the X-ray band, the determination of elemental abundance ratios in supernova remnants (SNRs) through their spectra has reached enough precision to constrain SN Ia models. Martínez-Rodríguez et al have shown that the Ca/S mass ratio in SNRs cannot be reproduced with the standard nuclear reaction rates for a wide variety of SN Ia models, and suggested that the 12 C+ 16 O reaction rate could be overestimated by a factor as high as ten. We show that the same Ca/S ratio can be obtained by simultaneously varying the rates of the reactions 12 C+ 16 O, 12 C+ 12 C, 16 O+ 16 O, and 16 O(γ, α) 12 C within the reported uncertainties. We also show that the yields of the main products of SN Ia nucleosynthesis do not depend on the details of which rates are modified, but can be parametrized by an observational quantity such as Ca/S. Using this SNR-calibrated approach, we then proceed to compute a new set of SN Ia models and nucleosynthesis for both Chandrasekhar and sub-Chandrasekhar mass progenitors with a one-dimensional hydrodynamics and nucleosynthesis code. We discuss the nucleosynthesis of the models as a function of progenitor metallicity, mass, and deflagration-to-detonation transition density. The yields of each model are almost independent on the reaction rates modified for a common Ca/S ratio.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.