Porcine epidemic diarrhea virus (PEDV), an Alphacoronavirus in the family Coronaviridae, causes acute diarrhea, vomiting, dehydration, and high mortality rates in neonatal piglets. PEDV can also cause diarrhea, agalactia, and abnormal reproductive cycles in pregnant sows. Although PEDV was first identified in Europe, it has resulted in significant economic losses in many Asian swine-raising countries, including Korea, China, Japan, Vietnam, and the Philippines. However, from April 2013 to the present, major outbreaks of PEDV have been reported in the United States, Canada, and Mexico. Moreover, intercontinental transmission of PEDV has increased mortality rates in seronegative neonatal piglets, resulting in 10% loss of the US pig population. The emergence and re-emergence of PEDV indicates that the virus is able to evade current vaccine strategies. Continuous emergence of multiple mutant strains from several regions has aggravated porcine epidemic diarrhea endemic conditions and highlighted the need for new vaccines based on the current circulating PEDV. Epidemic PEDV strains tend to be more pathogenic and cause increased death in pigs, thereby causing substantial financial losses for swine producers. In this review, we described the epidemiology of PEDV in several countries and present molecular characterization of current strains. We also discuss PEDV vaccines and related issues.
BackgroundAvian origin canine influenza virus was reported in Korea. The dog to dog contact transmission of the avian origin canine influenza virus (CIV) H3N2 and CIV H3N8 was shown by experimental contact transmission. This study was focused on viral excretion and fever in order to elucidate the epidemiological associations which might be helpful to control the disease transmissions in CIV outbreak in dogs.MethodsAn influenza seronegative 10-week-old Beagle dog was experimentally inoculated with the canine influenza virus A/canine/01/2007, subtype H3N2. Eight hours after inoculation, the infected dog was cohoused with seven uninfected Beagle dogs. Clinical signs including fever were recorded for 14 days post inoculation.ResultsThe infected dog and four of seven contact dogs in the study showed clinical signs (sneezing, nasal discharge and coughing) during the study. Viral shedding occurred in all of the animals tested and began on 1 to 6 DPI in dogs with clinical signs. Elevated body temperatures above 39.5°C (geometric mean temperature of 39.86°C±0.49) were observed in all symptomatic dogs. The mean viral titer during fever was 2.99 log EID50/ml, which was significantly higher than the viral titer detected in the non fever.ConclusionsThe data show that contact dogs with a canine influenza infected dog shed different levels of virus in their nasal excretions and demonstrate that clinical signs, including fever, significantly correlate with the viral shedding.
During recent canine influenza surveillance in South Korea, a novel H3N1 canine influenza virus (CIV) that is a putative reassortant between pandemic H1N1 2009 and H3N2 CIVs was isolated. Genetic analysis of eight genes of the influenza virus revealed that the novel H3N1 isolate presented high similarities (99.1–99.9 %) to pandemic influenza H1N1, except for in the haemagglutinin (HA) gene. The HA gene nucleotide sequence of the novel CIV H3N1 was similar (99.6 %) to that of CIV H3N2 isolated in Korea and China. Dogs infected with the novel H3N1 CIV did not show any notable symptoms, in contrast to dogs infected with H3N2 CIV. Despite no visible clinical signs of disease, nasal shedding of virus was detected and the infected dogs presented mild histopathological changes.
A Vero cell attenuated porcine epidemic diarrhea virus (PEDV) strain, DR13, was distinguished from wild-type PEDV using restriction enzyme fragment length polymorphism (RFLP). Cell attenuated DR13 was orally or intramuscularly (IM) administered to late-term pregnant sows, and mortality resulting from the highly virulent PEDV challenge was investigated in passively immunized suckling piglets of the two different groups. The mortality rate of the oral group (13%) was lower than that of the IM group (60%). In particular, the concentration of IgA against PEDV was higher in piglets of sows in the oral group, compared to the IM group. The attenuated DR13 virus remained safe, even after three backpassages in piglets. The findings of this study support the theory that the Vero cell attenuated DR13 virus may be applied as an oral vaccine for inducing specific immunity in late-term pregnant sows with a high margin of protection against PEDV infection.
The open reading frame (ORF3) genes of the parent DR13, attenuated DR13, KPED-9, P-5V, and 12 field samples were cloned and sequenced to further explore the functions of wild- and attenuated-type porcine epidemic diarrhea viruses (PEDVs). Sequencing revealed that wild-type PEDVs ORF3 genes had a single ORF of 675 nucleotides encoding a protein of 224 amino acids with a predicted M (r) of 25.1-25.3 kDa. Attenuated-type PEDVs ORF3 genes had a single ORF of 624 nucleotides encoding a protein of 207 amino acids with a predicted M (r) of 23.4 kDa. The coding region of the ORF3 gene of attenuated-type PEDVs including attenuated DR13, KPED-9, and P-5V had 51 nucleotide deletions that were not found in the ORF3 genes of wild-type PEDVs including CV777, Br1/87, LZC, parent DR13, and 12 field samples. In addition, attenuated-type PEDVs have previously been found to exhibit reduced pathogenicity in pigs. Therefore, 51 nucleotide deletions appear to be meaningful and may be significant for PEDV pathogenicity, because they lead to changes in the predicted amino acid sequences of attenuated-type PEDVs. Reverse transcriptase-polymerase chain reaction (RT-PCR) on the partial ORF3 gene including 51 nucleotide deletions revealed that all PEDVs fell into two types, wild- and attenuated-type PEDVs. Wild-type PEDVs containing parent DR13 and 12 field samples had RT-PCR products of 245 bp in size, while attenuated-type PEDVs containing PEDV vaccine strains (attenuated DR13, KPED-9, P-5V) had products of 194 bp. In addition, all PEDV vaccine strains were used as live virus vaccine, because they previously exhibited a reduced pathogenicity in pigs. Therefore, large deletion region, which is comprise 17 amino acid deletions caused by 51 nucleotide deletions and is seen in all PED live vaccine strains, may be important site for PEDV pathogenicity, and we can use it for differentiation of wild- and attenuated-type PEDVs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.