Summary Mammals expend energy in many ways, including basic cellular maintenance and repair, digestion, thermoregulation, locomotion, growth and reproduction. These processes can vary tremendously among species and individuals, potentially leading to large variation in daily energy expenditure (DEE). Locomotor energy costs can be substantial for large-bodied species and those with high-activity lifestyles. For humans in industrialized societies, locomotion necessary for daily activities is often relatively low, so it has been presumed that activity energy expenditure and DEE are lower than in our ancestors. Whether this is true and has contributed to a rise in obesity is controversial. In humans, much attention has centered on spontaneous physical activity (SPA) or non-exercise activity thermogenesis (NEAT), the latter sometimes defined so broadly as to include all energy expended due to activity, exclusive of volitional exercise. Given that most people in Western societies engage in little voluntary exercise, increasing NEAT may be an effective way to maintain DEE and combat overweight and obesity. One way to promote NEAT is to decrease the amount of time spent on sedentary behaviours (e.g. watching television). The effects of voluntary exercise on other components of physical activity are highly variable in humans, partly as a function of age, and have rarely been studied in rodents. However, most rodent studies indicate that food consumption increases in the presence of wheels; therefore, other aspects of physical activity are not reduced enough to compensate for the energetic cost of wheel running. Most rodent studies also show negative effects of wheel access on body fat, especially in males. Sedentary behaviours per se have not been studied in rodents in relation to obesity. Several lines of evidence demonstrate the important role of dopamine, in addition to other neural signaling networks (e.g. the endocannabinoid system), in the control of voluntary exercise. A largely separate literature points to a key role for orexins in SPA and NEAT. Brain reward centers are involved in both types of physical activities and eating behaviours, likely leading to complex interactions. Moreover, voluntary exercise and, possibly, eating can be addictive. A growing body of research considers the relationships between personality traits and physical activity, appetite, obesity and other aspects of physical and mental health. Future studies should explore the neurobiology, endocrinology and genetics of physical activity and sedentary behaviour by examining key brain areas, neurotransmitters and hormones involved in motivation, reward and/or the regulation of energy balance.
Body condition indices are widely used by ecologists, but many indices are used without empirical validation. To test the validity of a variety of indices, we compared how well a broad range of body condition indices predicted body fat mass, percent body fat and residual fat mass in mice Mus musculus. We also compared the performance of these condition indices with the multiple regression of several morphometric variables on body fat mass, percent body fat and residual fat mass. In our study population, two ratio based condition indices – body mass/body length and log body mass/log body length – predicted body fat mass as well as or better than other ratio and residual indices of condition in females. In males one ratio based condition index (log body mass/log body length) and one residual index (residuals from a regression of pelvic circumference on body length) were best at predicting body fat mass. All indices were better at estimating body fat mass, and residual fat mass than at estimating percent body fat. The predictions of body fat were much better for females than for males. Multiple regressions incorporating pelvic circumference (i.e. girth at the iliac crests) were the best predictors of body fat mass, residual fat mass, and percent body fat, and these multiple regressions were better than any of the condition indices. We recommend 1) that condition be precisely defined, 2) that predictors of condition be empirically validated, 3) that pelvic circumference be considered as a potential predictor of fat content, and 4) that, in general, multiple regression be considered as an alternative to condition indices.
We evaluated the effect of voluntary exercise on spontaneous physical activity (SPA) and food consumption in mice from 4 replicate lines bred for 57 generations for high voluntary wheel running (HR) and from 4 non-selected control (C) lines. Beginning at ~24 days of age, mice were housed in standard cages or in cages with attached wheels. Wheel activity and SPA were monitored in 1-min intervals. Data from the 8th week of the experiment were analyzed because mice were sexually mature and had plateaued in body mass, weekly wheel running distance, SPA, and food consumption. Body mass, length, and masses of the retroperitoneal fat pad, liver, and heart were recorded after the 13th week. SPA of both HR and C mice decreased with wheel access, due to reductions in both duration and average intensity of SPA. However, total activity duration (SPA+wheel running; min/day) was ~1/3 greater when mice were housed with wheels, and food consumption was significantly increased. Overall, food consumption in both HR and C mice was more strongly affected by wheel running than by SPA. Duration of wheel running had a stronger effect than average speed, but the opposite was true for SPA. With body mass as a covariate, chronic wheel access significantly reduced fat pad mass and increased heart mass in both HR and C mice. Given that both HR and C mice housed with wheels had increased food consumption, the energetic cost of wheel running was not fully compensated by concomitant reductions in SPA. The experiment demonstrates that both duration and intensity of both wheel running and SPA were significant predictors of food consumption. This sort of detailed analysis of the effects of different aspects of physical activity on food consumption has not previously been reported for a non-human animal, and it sets the stage for longitudinal examination of energy balance and its components in rodent models.
Patterns of sexual size dimorphism (SSD) and cranial dimorphism are well documented. However, limited examinations exist of the contrasts in the patterns and nature of dimorphism across body regions (e.g. cranium, pelvis), particularly when these regions have different sex-specific functions (e.g. display in mating, locomotion, and reproduction). Using landmark-based morphometric techniques, we investigated size and shape dimorphism variation in the crania and pelves of two closely-related fox species within the genus Urocyon. Although we found no significant size and shape dimorphism in the crania of either species, we did find significant dimorphism in the pelvis: its size was dimorphic in Urocyon littoralis (but not in Urocyon cinereoargenteus) and its shape was dimorphic in both species (though more pronounced in U. littoralis). The observation of greater dimorphism in the pelvis than in the cranium suggests that factors such as offspring size and locomotor mode play a greater role in sexual dimorphism than simple 'whole body' allometric affects associated with dimorphism in body size.
In response to COVID-19, in spring, 2020 many of us rapidly took our in-person courses to an online format. This was panic pedagogy and we made the best of an emergency situation. Going forward, we now have a chance to reflect and think critically about how to best develop and deliver evolutionary and ecological content online. In this piece we challenge instructors to use the opportunity created by the COVID-19 pandemic to rethink the way in which they teach. Let us leverage the situation to increase use of active and inclusive practices in our (online) classrooms. We encourage instructors to be
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.