Increased IFNα production contributes to the pathogenesis of infectious and autoimmune diseases. Plasmacytoid dendritic cells (pDCs) from females produce more IFNα upon TLR7 stimulation than pDCs from males, yet the mechanisms underlying this difference remain unclear. Here, we show that basal levels of interferon regulatory factor 5 (IRF5) in pDCs were significantly higher in females compared to males and positively correlated with the percentage of IFNα-secreting pDCs. Delivery of recombinant IRF5 protein into human primary pDCs increased TLR7-mediated IFNα secretion. In mice, genetic ablation of the estrogen receptor 1 (Esr1) gene in the hematopoietic compartment or DC lineage reduced IRF5 mRNA expression in pDCs and IFNα production. IRF5 mRNA levels furthermore correlated with Esr1 mRNA levels in human pDCs, consistent with IRF5 regulation at the transcriptional level by Esr1. Taken together, these data demonstrate a critical mechanism by which sex differences in basal pDC IRF5 expression lead to higher IFNα production upon TLR7 stimulation in females, and provide novel targets for the modulation of immune responses and inflammation.
SummaryAlthough remote ischemic pre-conditioning (RIPC) reduced infarct size in animal experiments and proof-of-concept clinical trials, recent phase III trials failed to confirm cardioprotection during cardiac surgery. Here, we characterized the kinetic properties of humoral factors that are released after RIPC, as well as the signal transduction pathways that were responsible for cardioprotection in an ex vivo model of global ischemia reperfusion injury. Venous blood from 20 healthy volunteers was collected at baseline and 5 min, 30 min, 1 h, 6 h, and daily from 1 to 7 days after RIPC (3 × 5/5 min upper-limb ischemia/reperfusion). Plasma-dialysates (cut-off: 12 to 14 kDa; dilution: 1:20) were infused into Langendorff-perfused mouse hearts subjected to 20/120 min global ischemia/reperfusion. Infarct size and phosphorylation of signal transducer and activator of transcription (STAT)3, STAT5, extracellular-regulated kinase 1/2 and protein kinase B were determined. In a subgroup of plasma-dialysates, an inhibitor of STAT3 (Stattic) was used in mouse hearts. Perfusion with baseline-dialysate resulted in an infarct size of 39% of ventricular mass (interquartile range: 36% to 42%). Perfusion with dialysates obtained 5 min to 6 days after RIPC significantly reduced infarct size by ∼50% and increased STAT3 phosphorylation beyond that with baseline-dialysate. Inhibition of STAT3 abrogated these effects. These results suggest that RIPC induces the release of cardioprotective, dialyzable factor(s) within 5 min, and that circulate for up to 6 days. STAT3 is activated in murine myocardium by RIPC-induced human humoral factors and is causally involved in cardioprotection.
Objectives To investigate the role of coronary vasa vasorum (VV) neovascularization in the progression and complications of human coronary atherosclerotic plaques. Background Accumulating evidence supports an important role of VV neovascularization in atherogenesis and lesion location determination in coronary artery disease. VV neovascularization can lead to intraplaque hemorrhage, which has been identified as a promoter of plaque progression and complications like plaque rupture. We hypothesized that distinctive patterns of VV neovascularization and associated plaque complications can be found in different stages of human coronary atherosclerosis. Methods Hearts from 15 patients (age 52±5, mean±SEM) were obtained at autopsy, perfused with Microfil™ and subsequently scanned with micro-computed tomography (micro-CT). Two-cm-segments (n=50) were histologically classified as either normal (n=12), nonstenotic plaque (<50% stenosis, n=18), or calcified (n=10) or non-calcified (n=10) stenotic plaque. Micro-CT images were analyzed for VV density (#/mm2), VV vascular area fraction (mm2/mm2) and VV endothelial surface fraction (mm2/mm3). Histological sections were stained for Mallory’s (iron), von Kossa (calcium) and glycophorin-A (erythrocyte fragments) as well as endothelial nitric oxide synthase (eNOS), vascular endothelial growth factor (VEGF) and tumor necrosis factor-alpha (TNF-α). Results VV density was higher in segments with non-stenotic and non-calcified stenotic plaques as compared to normals (3.36±0.45, 3.72±1.03 vs. 1.16±0.21, P<0.01). In calcified stenotic plaques VV spatial density was lowest (0.95±0.21, P<0.05 vs. non-stenotic and non-calcified stenotic plaque). The amount of iron and glycophorin A was significantly higher in non-stenotic and stenotic plaques as compared to normals, and correlated with VV density (Kendall-Tau correlation-coefficient 0.65 and 0.58 respectively, P<0.01). Moreover, relatively high amounts of iron and glycophorin A were found in calcified plaques. Further immunohistochemical characterization of VV revealed positive staining for eNOS and TNF-α but not VEGF. Conclusion Our results support a possible role of VV neovascularization, VV rupture and intraplaque hemorrhage in the progression and complications of human coronary atherosclerosis.
The outcomes of many diseases differ between women and men, with women experiencing a higher incidence and more severe pathogenesis of autoimmune and some infectious diseases. It has been suggested that this is partially due to activation of plasmacytoid dendritic cells (pDCs), the main producers of interferon (IFN)-α, in response to toll-like receptor (TLR)7 stimulation. We investigated the induction of type I IFN (IFN-I) subtypes upon TLR7 stimulation on isolated pDCs. Our data revealed a sex-specific differential expression of IFN-Is, with pDCs from females showing a significantly higher mRNA expression of all 13 IFN-α subtypes. In addition, pDCs from females had higher levels of IFN-β mRNA after stimulation, indicating that sex differences in IFN-I production by pDCs were mediated by a signaling event upstream of the first loop of IFN-I mRNA transcription. Furthermore, the surface expression levels of the common IFN-α/β receptor subunit 2 were significantly higher on pDCs from females in comparison to males. These data indicate that higher IFN-α production is already established at the mRNA level and propose a contribution of higher IFN-α/β receptor 2 expression on pDCs to the immunological differences in IFN-I production observed between females and males.
COVID‐19, caused by SARS‐CoV‐2, has emerged as a global pandemic. While immune responses of the adaptive immune system have been in the focus of research, the role of NK cells in COVID‐19 remains less well understood. Here, we characterized NK cell‐mediated SARS‐CoV‐2 antibody‐dependent cellular cytotoxicity (ADCC) against SARS‐CoV‐2 spike‐1 (S1) and nucleocapsid (NC) protein. Serum samples from SARS‐CoV‐2 resolvers induced significant CD107a‐expression by NK cells in response to S1 and NC, while serum samples from SARS‐CoV‐2‐negative individuals did not. Furthermore, serum samples from individuals that received the BNT162b2 vaccine induced strong CD107a expression by NK cells that increased with the second vaccination and was significantly higher than observed in infected individuals. As expected, vaccine‐induced responses were only directed against S1 and not against NC protein. S1‐specific CD107a responses by NK cells were significantly correlated to NK cell‐mediated killing of S1‐expressing cells. Interestingly, screening of serum samples collected prior to the COVID‐19 pandemic identified two individuals with cross‐reactive antibodies against SARS‐CoV‐2 S1, which also induced degranulation of NK cells. Taken together, these data demonstrate that antibodies induced by SARS‐CoV‐2 infection and anti‐SARS‐CoV‐2 vaccines can trigger significant NK cell‐mediated ADCC activity, and identify some cross‐reactive ADCC‐activity against SARS‐CoV‐2 by endemic coronavirus‐specific antibodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.