Electricity generated by hydro power is the most widely used form of renewable energy, and as such, its vulnerability to climate change is of great interest. The aim of this work is to estimate the change in river discharge characteristics in the Alpine region due to possible impacts of climate and the related changes in the power generation of run-of-river hydro power plants up to 2050. Four representative bias-corrected climate simulations from the ENSEMBLES project are chosen based on the SRES greenhouse gas emission scenario pathway A1B. Data of these simulations serve as input for a lumped-parameter rainfall-runoff model at a monthly time step, which is calibrated on discharge data of gauging stations along important rivers in the Alpine region. A power plant model fed with runoff data generated by the hydrological model is used to compute changes in the long-term average annual net electrical energy output of hydro power plants for the whole Alpine region; while the model for Austria is based on known technical parameters of the power plants, a more simplified approach is employed elsewhere. The general warming trend observed in all four climate scenarios causes to various degrees a seasonal shift towards earlier runoff. However, more diverse changes in precipitation for the different climate scenarios and time periods result in diverging hydrological projections. Although the annual runoff is found to decrease in some scenarios, the generally observed shift of runoff towards the winter season that typically shows higher energy consumption in the Alpine region suggests that the overall impact for the electricity sector tends to be positive rather than negative. Estimated changes in the average annual electricity generation of runof-river plants are generally found to be within a singledigit percentage range but can be either positive or negative depending on the climate scenario. The estimated ranges reflect the diversity (uncertainty) of the climate models; the total bandwidth of possible changes in the water availability and hydro power generation in the Alpine region up to 2050 is assumed to be even higher, because of other uncertainties in the model chain that are not explicitly considered here. Nevertheless, as the general regional trends and bandwidth of changes in runoff and hydro power production strongly depend on the future changes in precipitation, the results of this work provide reasonable orders of magnitude of expected changes and are seen as a first step towards an improved understanding of climate impacts on hydro power production within the entire Alpine region.
Am Institut f€ u ur Elektrizit€ a atswirtschaft und Energieinnovation der TU Graz wurde unter eigenfinanziertem Einsatz von bisher 30 Personenjahren das Simulationsmodell ATLANTIS entwickelt. In diesem frei parametrierbaren Modell werden die komplexen Zusammenh€ a ange der Realwirtschaft (z. B. Netze und Kraftwerke) und der Nominalwirtschaft (z. B. stremb€ e ersen, Unternehmensbilanzen und Gewinn-und Verlustrechnungen) der europ€ a aischen Elektrizit€ a atswirtschaft abgebildet. Damit erm€ o oglicht ATLANTIS die Erstellung realit€ a atsnaher Entwicklungsszenarien bis 2030. Im folgenden Beitrag werden der Aufbau von ATLANTIS dargestellt und die Funktionsweise anhand einer konkreten Simulation f€ u ur die Elektrizit€ a atswirtschaft in S€ u ud-Ost-Europa sowie f€ u ur ein konkretes Unternehmen demonstriert.Schlü sselwö rter: EU-Elektrizit€ a atswirtschaft; Marktorganisationen; Verbundnetz; Unternehmensmodelle; erneuerbare Energien; CO 2 -Emissionen; S€ u ud-Ost-Europa ATLANTIS -simulation model of the European electricitiy economy until 2030.At the Institute of Electricity Economics and Energy Innovation of TU Graz the self-financed simulation model ATLANTIS has been built with an input of 30 person-years. This free adaptable model includes the nominal economical (e.g. grids and power stations) as well as the real economical (e.g. power exchanges, balance sheets of companies and income and loss statements) of the European electricity economy and allows the calculation of realistic development scenarios until 2030. The following paper shows the structure of ATLANTIS and demonstrates the functionality by means of a simulation of the South-Eastern-European electricity economy as well as by means of a concrete company. EinleitungViele verschiedene politische, € o okonomische und technische Rahmenbedingungen beeinflussen die Entscheidungsfindung in der heutigen Elektrizit€ a atswirtschaft. In Folge des Strukturbruchs durch die Liberalisierung des europ€ a aischen Elektrizit€ a atsmarktes und der fortw€ a ahrenden Weiterentwicklung dieses Binnenmarktes k€ o onnen neue Fragestellungen nicht mehr mit der Erfahrung und den Erkenntnissen der ,,alten'' Elektrizit€ a atswirtschaft beantwortet werden.Dies war die Motivation f€ u ur die Entwicklung eines Simulationsmodells der europ€ a aischen Elektrizit€ a atswirtschaft, welches in dieser Arbeit vorgestellt wird. Das Simulationsmodell ATLANTIS wird seit nunmehr sieben Jahren am Institut f€ u ur Elektrizit€ a atswirtschaft und Energieinnovation an der Technischen Universit€ a at Graz entwickelt. Bislang flossen mehr als 40 Diplomarbeiten und insgesamt f€ u unf Dissertationen in das Modell ein, und es wurden bereits € u uber 30 eigen-finanzierte Personenjahre an Forschung und Entwicklung investiert. Aktuell arbeiten vier wissenschaftliche Universit€ a atsassistenten und vier Projektmitarbeiter im Rahmen einer Habilitation, dreier Dissertationen und elf Diplomarbeiten am Modell.Die im interdisziplin€ a aren Ansatz von ATLANTIS integrierten Fachdisziplinen umfassen vor allem Elektr...
Since the nuclear accident in Fukushima the European electricity economy has been in transition. The ongoing shut down of nuclear power plants and the wide-
India, as a ‘developing’ country, is in the middle of a unique situation of handling its energy transition towards carbon-free energy along with its continuous economic development. With respect to the agreed COP 21 and SDG 2030 targets, India has drafted several energy strategies revolving around clean renewable energy. With multiple roadblocks for development of large hydro power capacities within the country, the long-term renewable goals of India focus highly on renewable energy technologies like solar Photo-Voltaic (PV) and wind capacities. However, with a much slower rate of development in transmission infrastructure and the given situations of the regional energy systems in the Indian subcontinent, these significant changes in India could result in severe technical and economic consequences for the complete interconnected region. The presented investigations in this paper have been conducted using ATLANTIS_India, a unique techno-economic simulation model developed at the Institute of Electricity Economics and Energy Innovation/Graz University of Technology, designed for the electricity system in the Indian subcontinent region. The model covers the electricity systems of India, Bangladesh, Bhutan, Nepal, and Sri Lanka, and is used to analyse a scenario where around 118 GW of solar PV and wind capacity expansion is planned in India until the target year 2050. This paper presents the simulation approach as well as the simulated results and conclusions. The simulation results show the positive and negative techno-economic impacts of the discussed strategy on the overall electricity system, while suggesting possible solutions.
Emissionsreduktion und Effizienzsteigerung sind wesentliche Treiber fü r die Einfü hrung der Elektromobilitä t. Laut Herstellerangaben liegt der theoretische Energieverbrauch von Elektrofahrzeugen deutlich unter konventionellen Fahrzeugen. In der Praxis ist analog zu Diesel-und Benzinfahrzeugen ein hö herer Verbrauch zu erwarten. Der Emissionsvorteil elektrisch betriebener Fahrzeuge kommt insbesondere unter Nutzung heimischer erneuerbarer Energien zum Tragen. Aber auch unter Einsatz von Strom aus fossilen Energieträ gern zeigt sich das Emissionsreduktionspotenzial von Elektroautos gegenü ber konventionellen Fahrzeugen. Geringe energetische Bedarfszuwä chse, selbst bei hohen Marktdurchdringungsraten von E-Autos in den kommenden 10 bis 20 Jahren, stehen demnach bei Nutzung heimischer Potenziale im Bereich der erneuerbaren Energien hohen Emissionseinsparungspotenzialen gegenü ber. Laststeuernde Maßnahmen ermö glichen die Nutzung grö ßtenteils bestehender Netzinfrastruktur. Wä hrend der Aufbau von lokaler Ladeinfrastruktur eine wesentliche Herausforderung darstellt, gilt es, international kosteneffiziente und geeignete Akkumulatoren zu entwickeln. Schlü sselwö rter: Elektromobilitä t; CO 2 -Emissionen; LaststeuerungThe impacts of e-mobility on the energy system.Emission reduction and an increase in efficiency are the key benefits of e-mobility. As for energy consumption, the manufacturers' information shows the superiority of e-cars in comparison to conventional cars. In analogy to conventional cars, the consumption in practical application will be higher than the theoretical values. The potential for emission reduction is high, especially if the potential of renewable energy sources in Austria is used. Even if the electricity would be produced by fossil fuels, e-cars show emission reduction potential in comparison to conventional cars. Even in case of high market shares of e-cars, e-mobility doesn't lead to much additional energy consumption. By the use of load control methods the existing distribution grid will be widely sufficient. Although the development of charging infrastructures is one of the key challenges, the development of cost-effective and suitable batteries should not be left aside. EinleitungElektromobilitä t ist eines der bestimmenden Themen, welches derzeit in Fachkreisen zu Energie, Umwelt und Verkehr diskutiert wird. Die Aktualitä t der Thematik spiegelt sich in zahlreichen Forschungsprojekten, Fö rderprogrammen und Pilotversuchen fü r Elektromobilitä t in Ö sterreich und auch im Rest Europas wider. Insbesondere die Vorteile bezü glich Emissionen, Energieeffizienz und Lä rmentwicklung gegenü ber konventionellen Fahrzeugen sind hä ufig angefü hrte Treiber fü r den elektrifizierten Individualverkehr. Ein besonderer Aspekt der Elektromobilitä t sind die zukü nftigen Herausforderungen an die Elektrizitä tswirtschaft.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.