Subcutaneous pre-implantation of a basic reinforced tubular construct resulted in a vascularized autologous tube, which may potentially replace bowel in standard urinary diversions. To our knowledge we introduce a straightforward 2-step procedure to create artificial urinary conduits in a large animal model.
Cartilage consists of chondrocytes and a special extracellular matrix (ECM) having unique biochemical, biophysical, and biomechanical properties that play a critical role in the proliferation and differentiation of cells inherent to cartilage functions. Cartilage tissue engineering (CTE) requires recreating these microenvironmental physicochemical conditions to lead to chondrocyte differentiation from stem cells. ECM-derived hybrid scaffolds based on chondroitin sulfate, hyaluronic acid, collagen, and cartilage ECM analogs provide environments conducive to stem cell proliferation. In this review, we describe hybrid scaffolds based on these four cartilage ECM derivatives; we also categorize these scaffolds based on the methods used for their preparation. The use of hybrid scaffolds is increasing in CTE to address the complexity of cartilage tissue. Thus, a comprehensive review on the topic should be a useful guide for future research.Scaffolds fabricated from extracellular matrix (ECM) derivatives are composed of conducive structures for cell attachment, proliferation, and differentiation, but generally do not have proper mechanical properties and load-bearing capacity. In contrast, scaffolds based on synthetic biomaterials demonstrate appropriate mechanical strength, but the absence of desirable biological properties is one of their main disadvantages. To integrate mechanical strength and biological cues, these ECM derivatives can be conjugated with synthetic biomaterials. Hence, hybrid scaffolds comprising both advantages of synthetic polymers and ECM derivatives can be considered a robust vehicle for tissue engineering applications.
To restore damaged organ function or to investigate organ mechanisms, it is necessary to prepare replicates that follow the biological role model as faithfully as possible. The interdisciplinary field of tissue engineering has great potential in regenerative medicine and might overcome negative side effects in the replacement of damaged organs. In particular, tubular organ structures of the genitourinary tract, such as the ureter and urethra, are challenging because of their complexity and special milieu that gives rise to incrustation, inflammation and stricture formation. Tubular biohybrids were prepared from primary porcine smooth muscle cells embedded in a fibrin gel with a stabilising poly(vinylidene fluoride) mesh. A mechanotransduction was performed automatically with a balloon kyphoplasty catheter. Diffusion of urea and creatinine, as well as the bursting pressure, were measured. Light and electron microscopy were used to visualise cellular distribution and orientation. Histological evaluation revealed a uniform cellular distribution in the fibrin gel. Mechanical stimulation with a stretch of 20% leads to a circumferential orientation of smooth muscle cells inside the matrix and a longitudinal alignment on the outer surface of the tubular structure. Urea and creatinine permeability and bursting pressure showed a non-statistically significant trend towards stimulated tissue constructs. In this proof of concept study, an innovative technique of intraluminal pressure for mechanical stimulation of tubular biohybrids prepared from autologous cells and a composite material induce bi-directional orientation of smooth muscle cells by locally and cyclically applied mechanical tension. Such geometrically driven patterns of cell growth within a scaffold may represent a key stage in the future tissue engineering of implantable ureter replacements that will allow the active transportation of urine from the renal pelvis into the bladder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.