BackgroundFemale sex pheromones attracting mating partners over long distances are a major determinant of reproductive isolation and speciation in Lepidoptera. Males can also produce sex pheromones but their study, particularly in butterflies, has received little attention. A detailed comparison of sex pheromones in male butterflies with those of female moths would reveal patterns of conservation versus novelty in the associated behaviours, biosynthetic pathways, compounds, scent-releasing structures and receiving systems. Here we assess whether the African butterfly Bicyclus anynana, for which genetic, genomic, phylogenetic, ecological and ethological tools are available, represents a relevant model to contribute to such comparative studies.Methodology/Principal FindingsUsing a multidisciplinary approach, we determined the chemical composition of the male sex pheromone (MSP) in the African butterfly B. anynana, and demonstrated its behavioural activity. First, we identified three compounds forming the presumptive MSP, namely (Z)-9-tetradecenol (Z9-14:OH), hexadecanal (16:Ald ) and 6,10,14-trimethylpentadecan-2-ol (6,10,14-trime-15-2-ol), and produced by the male secondary sexual structures, the androconia. Second, we described the male courtship sequence and found that males with artificially reduced amounts of MSP have a reduced mating success in semi-field conditions. Finally, we could restore the mating success of these males by perfuming them with the synthetic MSP.Conclusions/SignificanceThis study provides one of the first integrative analyses of a MSP in butterflies. The toolkit it has developed will enable the investigation of the type of information about male quality that is conveyed by the MSP in intraspecific communication. Interestingly, the chemical structure of B. anynana MSP is similar to some sex pheromones of female moths making a direct comparison of pheromone biosynthesis between male butterflies and female moths relevant to future research. Such a comparison will in turn contribute to understanding the evolution of sex pheromone production and reception in butterflies.
In this study we tested whether pyrrolizidine alkaloids (PAs) ofCynoglossum officinale serve as antifeedants against herbivores. Total PA N-oxide extracts of the leaves significantly deterred feeding by generalist herbivores. Specialist herbivores did not discriminate between food with high and low PA levels. Three PAs fromC. officinale, heliosupine, echinatine, and 3'-acetylechinatine, equally deterred feeding by the polyphagous larvae ofSpodoptera exigua. Although the plants mainly contain PAs in their N-oxide form, reduced PAs deterred feeding byS. exigua more efficiently than PA N-oxides. On rosette plants, the monophagous weevilMogulones cruciger significantly consumed more of the youngest leaves, which had the highest PA level and the highest nitrogen percentage. Larvae ofEthmia bipunctella, which are oligophagous within the Boraginaceae, did not discriminate between leaves. All generalist herbivores tested significantly avoided the youngest leaves with the highest PA levels. In the field, the oldest leaves also were relatively more damaged by herbivores than the youngest leaves. It is hypothesized that the skewed distribution of PAs over the leaves of rosette plants reflects optimal defense distribution within the plant.
Summary7-spot ladybirds secrete alkaloid (coccinelline)-rich fluid (reflex blood) from leg joints as a defence mechanism against predators. A technique is described that enables the collection and accurate quantification of reflex blood produced, and the amount of coccinelline therein. Coccinelline was found distributed throughout the body, although concentrated in the reflex blood. Reflex blood was collected from a large set of beetles at several time points. Significant variation was found among beetles in the amount of reflex blood produced (for males and for females corrected for body weight) and the coccinelline concentration of the reflex blood. The results are discussed in relation to automimicry and the maintenance of variation through energy trade-offs. The relationships between tendency to aggregate, ability to reflex bleed and the possession of aposematic coloration are also considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.