A Laser Ion Mobility Spectrometer has been set up and trace detection experiments have been performed. We find that laser ionization almost selectively ionizes aromatic hydrocarbons. Aliphatic hydrocarbons are only laser-ionized in case these contain conjugated double bonds. As, in contrast to radioactive ion mobility spectrometry, background air constituents and air contaminants cannot be ionized, drift spectra are inherently simple and easily interpretable. We show that a laser ion mobility spectrometer can be operated in two basically different modes, either using tunable or fixedfrequency laser sources. In the tunable laser mode, aromatic hydrocarbons can be detected in the positive mode and distinguished from each other on account of their different excitation wavelengths and ion drift times. In the fixedfrequency mode, specially chosen and intentionally admitted aromatic hydrocarbons are laser ionized and the primary ionization is transferred to non-aromatic species by means of atmospheric pressure chemical ionization. In this latter mode of operation nitroglycerin and triacetone triperoxide, two nonaromatic high explosives, could be detected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.