Background Data on patients with COVID-19 who have cancer are lacking. Here we characterise the outcomes of a cohort of patients with cancer and COVID-19 and identify potential prognostic factors for mortality and severe illness.Methods In this cohort study, we collected de-identified data on patients with active or previous malignancy, aged 18 years and older, with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection from the USA, Canada, and Spain from the COVID-19 and Cancer Consortium (CCC19) database for whom baseline data were added between March 17 and April 16, 2020. We collected data on baseline clinical conditions, medications, cancer diagnosis and treatment, and COVID-19 disease course. The primary endpoint was all-cause mortality within 30 days of diagnosis of COVID-19. We assessed the association between the outcome and potential prognostic variables using logistic regression analyses, partially adjusted for age, sex, smoking status, and obesity. This study is registered with ClinicalTrials.gov, NCT04354701, and is ongoing. FindingsOf 1035 records entered into the CCC19 database during the study period, 928 patients met inclusion criteria for our analysis. Median age was 66 years (IQR 57-76), 279 (30%) were aged 75 years or older, and 468 (50%) patients were male. The most prevalent malignancies were breast (191 [21%]) and prostate (152 [16%]). 366 (39%) patients were on active anticancer treatment, and 396 (43%) had active (measurable) cancer. At analysis (May 7, 2020), 121 (13%) patients had died. In logistic regression analysis, independent factors associated with increased 30-day mortality, after partial adjustment, were: increased age (per 10 years; partially adjusted odds ratio 1•84, 95% CI 1•53-2•21), male sex (1•63, 1•07-2•48), smoking status (former smoker vs never smoked: 1•60, 1•03-2•47), number of comorbidities (two vs none: 4•50, 1•33-15•28), Eastern Cooperative Oncology Group performance status of 2 or higher (status of 2 vs 0 or 1: 3•89, 2•11-7•18), active cancer (progressing vs remission: 5•20, 2•77-9•77), and receipt of azithromycin plus hydroxychloroquine (vs treatment with neither: 2•93, 1•79-4•79; confounding by indication cannot be excluded). Compared with residence in the US-Northeast, residence in Canada (0•24, 0•07-0•84) or the US-Midwest (0•50, 0•28-0•90) were associated with decreased 30-day all-cause mortality. Race and ethnicity, obesity status, cancer type, type of anticancer therapy, and recent surgery were not associated with mortality. Interpretation Among patients with cancer and COVID-19, 30-day all-cause mortality was high and associated with general risk factors and risk factors unique to patients with cancer. Longer follow-up is needed to better understand the effect of COVID-19 on outcomes in patients with cancer, including the ability to continue specific cancer treatments.
The rationale was to develop recommendations on the use of 18 F-FDG PET in breast, colorectal, esophageal, head and neck, lung, pancreatic, and thyroid cancer; lymphoma, melanoma, and sarcoma; and unknown primary tumor. Outcomes of interest included the use of 18 F-FDG PET for diagnosing, staging, and detecting the recurrence or progression of cancer. Methods: A search was performed to identify all published randomized controlled trials and systematic reviews in the literature. An additional search was performed to identify relevant unpublished systematic reviews. These publications comprised both retrospective and prospective studies of varied methodologic quality. The anticipated consequences of false-positive and false-negative tests when evaluating clinical usefulness, and the impact of 18 F-FDG PET on the management of cancer patients, were also reviewed. Results and Conclusion: 18 F-FDG PET should be used as an imaging tool additional to conventional radiologic methods such as CT or MRI; any positive finding that could lead to a clinically significant change in patient management should be confirmed by subsequent histopathologic examination because of the risk of false-positive results. 18 F-FDG PET should be used in the appropriate clinical setting for the diagnosis of head and neck, lung, or pancreatic cancer and for unknown primary tumor. PET is also indicated for staging of breast, colon, esophageal, head and neck, and lung cancer and of lymphoma and melanoma. In addition, 18 F-FDG PET should be used to detect recurrence of breast, colorectal, head and neck, or thyroid cancer and of lymphoma. PET is an imaging technique that provides unique information about the molecular and metabolic changes associated with disease. The technology has existed for more than 30 years but has been used clinically for only the last 10-15 years. In this period, dramatic improvements in technology, the routine availability of medical cyclotrons (to produce the necessary short-lived positron emitters), and favorable reimbursement decisions in the late 1990s have led to a tremendous increase in the use of this technology. The major area of clinical application is currently in oncology, with some application in cardiology and neurology.PET requires the use of molecules (radiopharmaceuticals) that are labeled with radioactive nuclides. The amounts of radiolabeled material administered are extremely small (10 26 -10 29 g) and have essentially no pharmacologic effect. In this regard, PET has the unique ability to assess molecular alterations associated with disease without perturbing or altering the fundamental underlying molecular and biochemical processes. Although the number of molecular probes that can be radiolabeled with positron emitters is extremely large, and clinical investigational uses number in the thousands, clinical practice has been limited principally to the use of a glucose analog labeled with the positron emitter 18 F-FDG. 18 F-FDG was first synthesized in 1978 (1) and has become the most commonly used radioph...
The NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for Neuroendocrine and Adrenal Gland Tumors focus on the diagnosis, treatment, and management of patients with neuroendocrine tumors (NETs), adrenal tumors, pheochromocytomas, paragangliomas, and multiple endocrine neoplasia. NETs are generally subclassified by site of origin, stage, and histologic characteristics. Appropriate diagnosis and treatment of NETs often involves collaboration between specialists in multiple disciplines, using specific biochemical, radiologic, and surgical methods. Specialists include pathologists, endocrinologists, radiologists (including nuclear medicine specialists), and medical, radiation, and surgical oncologists. These guidelines discuss the diagnosis and management of both sporadic and hereditary neuroendocrine and adrenal tumors and are intended to assist with clinical decision-making. This article is focused on the 2021 NCCN Guidelines principles of genetic risk assessment and counseling and recommendations for well-differentiated grade 3 NETs, poorly differentiated neuroendocrine carcinomas, adrenal tumors, pheochromocytomas, and paragangliomas.
PURPOSE To develop an evidence-based clinical practice guideline to assist in clinical decision making for patients with resected biliary tract cancer.METHODS ASCO convened an Expert Panel to conduct a systematic review of the literature on adjuvant therapy for resected biliary tract cancer and provide recommended care options for this patient population.RESULTS Three phase III randomized controlled trials, one phase II trial, and 16 retrospective studies met the inclusion criteria.RECOMMENDATIONS Based on evidence from a phase III randomized controlled trial, patients with resected biliary tract cancer should be offered adjuvant capecitabine chemotherapy for a duration of 6 months. The dosing used in this trial is described in the qualifying statements, while it should be noted that the dose of capecitabine may also be determined by institutional and regional practices. Patients with extrahepatic cholangiocarcinoma or gallbladder cancer and a microscopically positive surgical resection margin (R1 resection) may be offered chemoradiation therapy. A shared decision-making approach is recommended, considering the risk of harm and potential for benefit associated with radiation therapy for patients with extrahepatic cholangiocarcinoma or gallbladder cancer. Additional information is available at www.asco.org/ gastrointestinal-cancer-guidelines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.