The electrochemical nitrate reduction reaction (NO3RR) to ammonia is an essential step toward restoring the globally disrupted nitrogen cycle. In search of highly efficient electrocatalysts, tailoring catalytic sites with ligand and strain effects in random alloys is a common approach but remains limited due to the ubiquitous energy-scaling relations. With interpretable machine learning, we unravel a mechanism of breaking adsorption-energy scaling relations through the site-specific Pauli repulsion interactions of the metal d-states with adsorbate frontier orbitals. The non-scaling behavior can be realized on (100)-type sites of ordered B2 intermetallics, in which the orbital overlap between the hollow *N and subsurface metal atoms is significant while the bridge-bidentate *NO3 is not directly affected. Among those intermetallics predicted, we synthesize monodisperse ordered B2 CuPd nanocubes that demonstrate high performance for NO3RR to ammonia with a Faradaic efficiency of 92.5% at −0.5 VRHE and a yield rate of 6.25 mol h−1 g−1 at −0.6 VRHE. This study provides machine-learned design rules besides the d-band center metrics, paving the path toward data-driven discovery of catalytic materials beyond linear scaling limitations.
Ammonia (NH3) has proved to be an effective alternative to hydrogen in low-temperature fuel cells via its direct ammonia oxidation reaction (AOR). However, the kinetically sluggish AOR has prohibitively hindered the attractive direct ammonia fuel cell (DAFC) applications. Here, we report an efficient AOR catalyst, in which ternary PtIrNi alloy nanoparticles well dispersed on a binary composite support consisting of porous silicon dioxide (SiO2) and carboxyl-functionalized carbon nanotube (PtIrNi/SiO2-CNT-COOH) through a sonochemical-assisted synthesis method. The PtIrNi alloy nanoparticles, with the aid of abundant OHad provided by porous SiO2 and the improved electrical conductivity by CNTs, exhibit remarkable catalytic activity for the AOR in alkaline media. It is evidenced by a lower onset potential (∼0.40 V vs reversible hydrogen electrode (RHE)) at room temperature than that of commercial PtIr/C (ca. 0.43 V vs RHE). Increasing NH3 concentrations and operation temperatures can significantly enhance AOR activity of this PtIrNi nanoparticle catalyst. Specifically, the catalyst at the temperature of 80 °C exhibits a much lower onset potential (∼0.32 V vs RHE) and a higher peak current density, indicating that DAFCs operated at a higher temperature are favorable for increased performance. Constant-potential density functional theory (DFT) calculations showed that the Pt–Ir ensembles on {100}-terminated surfaces serve as the active site. The introduction of Ni raises the center energy of the density of states projected onto the group d-orbitals of surface sites and thus lowers the theoretical onset potential for *NH2 dehydrogenation to *NH compared to Pt and Pt3Ir alloy.
The electrocatalytic ammonia oxidation reaction (AOR) to molecular dinitrogen (N2) is an essential component within a sustainable nitrogen cycle. The state-of-the-art Pt nanocatalyst, preferably terminated with (100) facets, suffers from a large overpotential (>0.5 V) and rapid deactivation, the origin of which remains largely unexplained due to the intrinsic complexity of solid-electrolyte interfaces. Within the framework of grand-canonical density functional theory (GC-DFT), we show that on Pt(100) the dehydrogenation of *NH2 is the potential determining step and that the *OH species, thermodynamically stable at >0.5 V vs RHE while overlooked in previous studies, plays an important role in kinetics by preferential stabilization of *NH via hydrogen bonding. Attributed to such favorable adsorbate–adsorbate interactions, *NH2 dehydrogenation is thermoneutral at 0.5 V vs RHE forming *NH species that can then dimerize easily at the 4-fold hollow sites, capturing the experimentally observed onset potential. At high operating potentials (>0.63 V vs RHE) where the *NH dehydrogenation to *N becomes thermodynamically feasible, surface deactivation occurs. However, the dimerization of *N with *N or *NH is kinetically facile, which suggests that the adsorbed *N is only the precursor to poisoning species, e.g., *NO, on Pt(100). The mechanistic insights obtained in this study could be exploited in new strategies of designing active, selective, and robust electrocatalysts for ammonia oxidation.
Low-temperature direct ammonia fuel cells (DAFCs) can use carbon-neutral ammonia as a fuel, which has attracted increasing attention recently due to ammonia’s low source-to-tank energy cost, easy transport and storage,...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.