Backgrounddiabetes is a serious health problem and a source of risk for numerous severe complications such as obesity and hypertension. Treatment of diabetes and its related diseases can be achieved by inhibiting key digestives enzymes-related to starch digestion secreted by pancreas.MethodsThe formulation omega-3 with fenugreek terpenenes was administrated to surviving diabetic rats. The inhibitory effects of this oil on rat pancreas α-amylase and maltase and plasma angiotensin-converting enzyme (ACE) were determined.Resultsthe findings revealed that administration of formulation omega-3 with fenugreek terpenenes (Om3/terp) considerably inhibited key enzymes-related to diabetes such as α-amylase activity by 46 and 52% and maltase activity by 37 and 35% respectively in pancreas and plasma. Moreover, the findings revealed that this supplement helped protect the β-Cells of the rats from death and damage. Interestingly, the formulation Om3/terp modulated key enzyme related to hypertension such as ACE by 37% in plasma and kidney. Moreover administration of fenugreek essential oil to surviving diabetic rats improved starch and glucose oral tolerance additively. Furthermore, the Om3/terp also decreased significantly the glucose, triglyceride (TG) and total-cholesterol (TC) and LDL-cholesterol (LDL-C) rates in the plasma and liver of diabetic rats and increased the HDL-Cholesterol (HDL-Ch) level, which helped maintain the homeostasis of blood lipid.Conclusionoverall, the findings of the current study indicate that this formulation Om3/terp exhibit attractive properties and can, therefore, be considered for future application in the development of anti-diabetic, anti-hypertensive and hypolipidemic foods.
Context: Despite some studies related to Juniperus phoenicea L. (Cupressaceae), phytochemical and biological investigations of this plant remain unexplored. Objective: This work is the first report dealing with the identification and characterization of volatile components and flavonoids in hexane and methanol extracts from J. phoenicea leaves Materials and methods: Antioxidant activity of hexane, and methanol extracts from J. phoenicea leaves were determined by DPPH-radical scavenging assay. a-Amylase inhibitory activity was evaluated by enzyme inhibition using in vitro assay (each extract was dissolved in DMSO to give concentrations of 50, 100 and 200 mg/mL). The chemical composition of fractions (Fr1-Fr3) from methanol extract was determined by high-performance liquid chromatography coupled with mass spectroscopy (HPLC-MS) analysis. Results and discussion: The hexane extract was analyzed by GC-MS technique which allowed the identification of 32 compounds. The main constituents were a-humulene (16.9%), pentadecane (10.2%) and a-cubebene (9.7%). Fraction Fr 2 exhibited a strong DPPH radical-scavenging activity (IC 50 ¼ 20.1 lg/mL) compared to that of BHT as well as the highest a-amylase inhibitory activity (IC 50 ¼ 28.4 lg/mL). Three flavonoids were identified in these fractions using HPLC-MS analysis: Quercetin 3-O-glucoside, isoscutellarein 7-O-pentoside and quercetin 3-O-pentoside. In addition, the more active fraction (Fr 2) was purified with semi-preparative HPLC affording one pure compound (amentoflavone) using 1 H NMR analysis. This compound exhibited powerful DPPH radical-scavenging (IC 50 ¼ 14.1 lg/mL) and a-amylase inhibition (IC 50 ¼ 20.4 lg/mL) effects. Conclusion: This study provides scientific support to some medicinal uses of J. phoenicea found in North Africa.
ARTICLE HISTORY
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.