[1] Comparison of results from a three-dimensional (3-D) finite difference time domain (FDTD) model of Schumann resonances (SR) with a set of classical eigenfrequency and quality factor solutions for laterally uniform spherically symmetric Earth-ionosphere cavity and recent SR observations during solar proton events (SPEs) and X-ray bursts demonstrate the potential and applicability of the FDTD technique for studies of realistic SR problems.Citation: Yang, H., and V. P. Pasko (2005), Three-dimensional finite difference time domain modeling of the Earth-ionosphere cavity resonances, Geophys. Res. Lett., 32, L03114,
[1] The conducting ionosphere and conducting surface of Titan, Venus, and Mars form a concentric resonator, which would support the possibility of the existence of global electromagnetic resonances. On Earth, such resonances are commonly referred to as Schumann resonances and are excited by lightning discharges. The detection of such resonances on other planets would give a support for the existence of the electrical discharges in the lower atmosphere on these planets. In this paper, a three-dimensional finite difference time domain modeling for the extremely low frequency propagation is employed to study the Schumann resonance problems on Titan, Venus, and Mars. The atmospheric conductivity profiles for these studies are derived from the previously reported ionospheric models for these planets. The Schumann resonance frequencies and Q factors on these planets are calculated and are critically compared with those obtained from the previously published models.
[1] The diurnal and seasonal variations of Schumann resonances (SR) have been reported in a number of experiments. In this paper, a three-dimensional FDTD model of the Earth-ionosphere cavity with a day-night asymmetric conductivity profile is employed to study the diurnal and seasonal variability of the power and frequency of the first Schumann resonance (SR) mode. Comparison of the FDTD results and recent experimental measurements shows a clear modulation in the SR power related to the local ionospheric height and global lightning activity. It is found that SR frequencies are not only a function of the local time but also are controlled by the global lightning activity changing with universal time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.