Accumulating evidence has underscored the important roles of long non-coding RNAs (lncRNAs) acting as competing endogenous RNAs (ceRNAs) in cancer initiation and progression. In this study, we used an integrative computational method to identify miRNA-mediated ceRNA crosstalk between lncRNAs and mRNAs, and constructed global and progression-related lncRNA-associated ceRNA networks (LCeNETs) in ovarian cancer (OvCa) based on “ceRNA hypothesis”. The constructed LCeNETs exhibited small world, modular architecture and high functional specificity for OvCa. Known OvCa-related genes tended to be hubs and occurred preferentially in the functional modules. Ten lncRNA ceRNAs were identified as potential candidates associated with stage progression in OvCa using ceRNA-network driven method. Finally, we developed a ten-lncRNA signature which classified patients into high- and low-risk subgroups with significantly different survival outcomes. Our study will provide novel insight for better understanding of ceRNA-mediated gene regulation in progression of OvCa and facilitate the identification of novel diagnostic and therapeutic lncRNA ceRNAs for OvCa.
BackgroundDiffuse large B-cell lymphoma (DLBCL) is an aggressive and complex disease characterized by wide clinical, phenotypic and molecular heterogeneities. The expression pattern and clinical implication of long non-coding RNAs (lncRNAs) between germinal center B-cell-like (GCB) and activated B-cell-like (ABC) subtypes in DLBCL remain unclear. This study aims to determine whether lncRNA can serve as predictive biomarkers for subtype classification and prognosis in DLBCL.MethodsGenome-wide comparative analysis of lncRNA expression profiles were performed in a large number of DLBCL patients from Gene Expression Omnibus (GEO), including GSE31312 cohort (N = 426), GSE10846 (N = 350) cohort and GSE4475 cohort (N = 129). Novel lncRNA biomarkers associated with clinically molecular subtype and prognosis were identified in the discovery cohort using differential expression analyses and weighted voting algorithm. The predictive value of the lncRNA signature was then assessed in two independent cohorts. The functional implication of lncRNA signature was also analyzed by integrative analysis of lncRNA and mRNA.ResultsSeventeen of the 156 differentially expressed lncRNAs between GCB and ABC subtypes were identified as candidate biomarkers and integrated into form a lncRNA-based signature (termed SubSigLnc-17) which was able to discriminate between GCB and ABC subtypes with AUC of 0.974, specificity of 89.6% and sensitivity of 92.5%. Furthermore, subgroups of patients characterized by the SubSigLnc-17 demonstrated significantly different clinical outcome. The reproducible predictive power of SubSigLnc-17 in subtype classification and prognosis was successfully validated in the internal validation cohort and another two independent patient cohorts. Integrative analysis of lncRNA-mRNA suggested that these candidate lncRNA biomarkers were mainly related to immune-associated processes, such as T cell activation, leukocyte activation, lymphocyte activation and Chemokine signaling pathway.ConclusionsOur study uncovered differentiated lncRNA expression pattern between GCB and ABC DLBCL and identified a 17-lncRNA signature for subtype classification and prognosis prediction. With further prospective validation, our study will improve the understanding of underlying molecular heterogeneities in DLBCL and provide candidate lncRNA biomarkers in DLBCL classification and prognosis.Electronic supplementary materialThe online version of this article (doi:10.1186/s12943-017-0580-4) contains supplementary material, which is available to authorized users.
BackgroundDysregulated long non-coding RNAs (lncRNAs) have been found to have oncogenic and/or tumor suppressive roles in the development and progression of cancer, implying their potentials as novel independent biomarkers for cancer diagnosis and prognosis. However, the prognostic significance of expression profile-based lncRNA signature for outcome prediction in patients with multiple myeloma (MM) has not yet been investigated.MethodsLncRNA expression profiles of a large cohort of patients with MM were obtained and analyzed by repurposing the publically available microarray data. An lncRNA-focus risk score model was developed from the training dataset, and then validated in the testing and another two independent external datasets. The time-dependent receiver operating characteristic (ROC) curve was used to evaluate the prognostic performance for survival prediction. The biological function of prognostic lncRNAs was predicted using bioinformatics analysis.ResultsFour lncRNAs were identified to be significantly associated with overall survival (OS) of patients with MM in the training dataset, and were combined to develop a four-lncRNA prognostic signature to stratify patients into high-risk and low-risk groups. Patients of training dataset in the high-risk group exhibited shorter OS than those in the low-risk group (HR = 2.718, 95 % CI = 1.937-3.815, p <0.001). The similar prognostic values of four-lncRNA signature were observed in the testing dataset, entire GSE24080 dataset and another two independent external datasets. Multivariate Cox regression and stratified analysis showed that the prognostic power of four-lncRNA signature was independent of clinical features, including serum beta 2-microglobulin (Sβ2M), serum albumin (ALB) and lactate dehydrogenase (LDH). ROC analysis also demonstrated the better performance for predicting 3-year OS. Functional enrichment analysis suggested that these four lncRNAs may be involved in known genetic and epigenetic events linked to MM.ConclusionsOur results demonstrated potential application of lncRNAs as novel independent biomarkers for diagnosis and prognosis in MM. These lncRNA biomarkers may contribute to the understanding of underlying molecular basis of MM.Electronic supplementary materialThe online version of this article (doi:10.1186/s13046-015-0219-5) contains supplementary material, which is available to authorized users.
Recent studies have demonstrated the utility and superiority of long non-coding RNAs (lncRNAs) as novel biomarkers for cancer diagnosis, prognosis, and therapy. In the present study, the prognostic value of lncRNAs in glioblastoma multiforme was systematically investigated by performing a genome-wide analysis of lncRNA expression profiles in 419 glioblastoma patients from The Cancer Genome Atlas (TCGA) project. Using survival analysis and Cox regression model, we identified a set of six lncRNAs (AC005013.5, UBE2R2-AS1, ENTPD1-AS1, RP11-89C21.2, AC073115.6, and XLOC_004803) demonstrating an ability to stratify patients into high- and low-risk groups with significantly different survival (median 0.899 vs. 1.611 years, p = 3.87e-09, log-rank test) in the training cohort. The six-lncRNA signature was successfully validated on independent test cohort of 219 patients with glioblastoma, and it revealed superior performance for risk stratification with respect to existing lncRNA-related signatures. Multivariate Cox and stratification analysis indicated that the six-lncRNA signature was an independent prognostic factor after adjusting for other clinical covariates. Further in silico functional analysis suggested that the six-lncRNA signature may be involved in the immune-related biological processes and pathways which are very well known in the context of glioblastoma tumorigenesis. The identified lncRNA signature had important clinical implication for improving outcome prediction and guiding the tailored therapy for glioblastoma patients with further prospective validation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.