BackgroundDiffuse large B-cell lymphoma (DLBCL) is an aggressive and complex disease characterized by wide clinical, phenotypic and molecular heterogeneities. The expression pattern and clinical implication of long non-coding RNAs (lncRNAs) between germinal center B-cell-like (GCB) and activated B-cell-like (ABC) subtypes in DLBCL remain unclear. This study aims to determine whether lncRNA can serve as predictive biomarkers for subtype classification and prognosis in DLBCL.MethodsGenome-wide comparative analysis of lncRNA expression profiles were performed in a large number of DLBCL patients from Gene Expression Omnibus (GEO), including GSE31312 cohort (N = 426), GSE10846 (N = 350) cohort and GSE4475 cohort (N = 129). Novel lncRNA biomarkers associated with clinically molecular subtype and prognosis were identified in the discovery cohort using differential expression analyses and weighted voting algorithm. The predictive value of the lncRNA signature was then assessed in two independent cohorts. The functional implication of lncRNA signature was also analyzed by integrative analysis of lncRNA and mRNA.ResultsSeventeen of the 156 differentially expressed lncRNAs between GCB and ABC subtypes were identified as candidate biomarkers and integrated into form a lncRNA-based signature (termed SubSigLnc-17) which was able to discriminate between GCB and ABC subtypes with AUC of 0.974, specificity of 89.6% and sensitivity of 92.5%. Furthermore, subgroups of patients characterized by the SubSigLnc-17 demonstrated significantly different clinical outcome. The reproducible predictive power of SubSigLnc-17 in subtype classification and prognosis was successfully validated in the internal validation cohort and another two independent patient cohorts. Integrative analysis of lncRNA-mRNA suggested that these candidate lncRNA biomarkers were mainly related to immune-associated processes, such as T cell activation, leukocyte activation, lymphocyte activation and Chemokine signaling pathway.ConclusionsOur study uncovered differentiated lncRNA expression pattern between GCB and ABC DLBCL and identified a 17-lncRNA signature for subtype classification and prognosis prediction. With further prospective validation, our study will improve the understanding of underlying molecular heterogeneities in DLBCL and provide candidate lncRNA biomarkers in DLBCL classification and prognosis.Electronic supplementary materialThe online version of this article (doi:10.1186/s12943-017-0580-4) contains supplementary material, which is available to authorized users.
Genome-wide mapping of chromatin interactions at high resolution remains experimentally and computationally challenging. Here we used a low-input ''easy Hi-C'' protocol to map the 3D genome architecture in human neurogenesis and brain tissues and also demonstrated that a rigorous Hi-C bias-correction pipeline (HiCorr) can significantly improve the sensitivity and robustness of Hi-C loop identification at sub-TAD level, especially the enhancer-promoter (E-P) interactions. We used HiCorr to compare the high-resolution maps of chromatin interactions from 10 tissue or cell types with a focus on neurogenesis and brain tissues. We found that dynamic chromatin loops are better hallmarks for cellular differentiation than compartment switching. HiCorr allowed direct observation of cell-type-and differentiation-specific E-P aggregates spanning large neighborhoods, suggesting a mechanism that stabilizes enhancer contacts during development. Interestingly, we concluded that Hi-C loop outperforms eQTL in explaining neurological GWAS results, revealing a unique value of high-resolution 3D genome maps in elucidating the disease etiology.
There is growing evidence of dysregulated long non-coding RNAs (lncRNAs) serving as potential biomarkers for cancer prognosis. However, systematic efforts of searching for an expression-based lncRNA signature for prognosis prediction in ovarian cancer (OvCa) have not been made yet. Here, we performed comprehensive analysis for lncRNA expression profiles and clinical data of 544 OvCa patients from The Cancer Genome Atlas (TCGA), and identified an eight-lncRNA signature with ability to classify patients of the training cohort into high-risk group showing poor outcome and low-risk group showing significantly improved outcome, which was further validated in the validation cohort and entire TCGA cohort. Multivariate Cox regression analysis and stratified analysis demonstrated that the prognostic value of this signature was independent of other clinicopathological factors. Associating the outcome prediction with BRCA1 and/or BRCA2 mutation revealed a superior prognosis performance both in BRCA1/2-mutated and BRCA1/2 wild-type tumors. Finally, a significantly correlation was found between the lncRNA signature and the complete response rate of chemotherapy, suggesting that this eight-lncRNA signature may be a measure to predict chemotherapy response and identify platinum-resistant patients who might benefit from other more efficacious therapies. With further prospective validation, this eight-lncRNA signature may have important implications for outcome prediction and therapy decisions.
Deregulation of long non-coding RNAs (lncRNAs) expression has been proven to be involved in the development and progression of cancer. However, expression pattern and prognostic value of lncRNAs in breast cancer recurrence remain unclear. Here, we analyzed lncRNA expression profiles of breast cancer patients who did or did not develop recurrence by repurposing existing microarray datasets from the Gene Expression Omnibus database, and identified 12 differentially expressed lncRNAs that were closely associated with tumor recurrence of breast cancer patients. We constructed a lncRNA-focus molecular signature by the risk scoring method based on the expression levels of 12 relapse-related lncRNAs from the discovery cohort, which classified patients into high-risk and low-risk groups with significantly different recurrence-free survival (HR = 2.72, 95% confidence interval 2.07–3.57; p = 4.8e-13). The 12-lncRNA signature also represented similar prognostic value in two out of three independent validation cohorts. Furthermore, the prognostic power of the 12-lncRNA signature was independent of known clinical prognostic factors in at least two cohorts. Functional analysis suggested that the predicted relapse-related lncRNAs may be involved in known breast cancer-related biological processes and pathways. Our results highlighted the potential of lncRNAs as novel candidate biomarkers to identify breast cancer patients at high risk of tumor recurrence.
Increasing evidence has highlighted the important roles of dysregulated long non-coding RNA (lncRNA) expression in tumorigenesis, tumor progression and metastasis. However, lncRNA expression patterns and their prognostic value for tumor relapse in lung adenocarcinoma (LUAD) patients have not been systematically elucidated. In this study, we evaluated lncRNA expression profiles by repurposing the publicly available microarray expression profiles from a large cohort of LUAD patients and identified specific lncRNA signature closely associated with tumor relapse in LUAD from significantly altered lncRNAs using the weighted voting algorithm and cross-validation strategy, which was able to discriminate between relapsed and non-relapsed LUAD patients with sensitivity of 90.9% and specificity of 81.8%. From the discovery dataset, we developed a risk score model represented by the nine relapse-related lncRNAs for prognosis prediction, which classified patients into high-risk and low-risk subgroups with significantly different recurrence-free survival (HR=45.728, 95% CI=6.241-335.1; p=1.69e-04). The prognostic value of this relapse-related lncRNA signature was confirmed in the testing dataset and other two independent datasets. Multivariable Cox regression analysis and stratified analysis showed that the relapse-related lncRNA signature was independent of other clinical variables. Integrative in silico functional analysis suggested that these nine relapse-related lncRNAs revealed biological relevance to disease relapse, such as cell cycle, DNA repair and damage and cell death. Our study demonstrated that the relapse-related lncRNA signature may not only help to identify LUAD patients at high risk of relapse benefiting from adjuvant therapy but also could provide novel insights into the understanding of molecular mechanism of recurrent disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.