Synthetic aperture radar (SAR), as an active microwave sensor, can inevitably receive radio frequency interference (RFI) generated by various electromagnetic equipment. When the SAR system receives RFI, it will affect SAR imaging and limit the application of SAR images. As a kind of RFI mitigation method, notch filtering method is a classical method with high efficiency and robust performance. However, the notch filtering methods pay no attention to the protection of useful signals. This paper proposed a modified 2-D notch filter based on image segmentation for RFI mitigation with signal-protected capability. (1) The adaptive gamma correction (AGC) approach was utilized to enhance the SAR image with RFI in the range-frequency and azimuth-time domain. (2) The modified selective binary and Gaussian filtering regularized level set (SBGFRLS) model was utilized to further process the image after AGC to accurately extract the contour of the useful signals with interference, which is more conducive to protecting the useful signals without interference. (3) The Generalized Singular Value Thresholding (GSVT) based low-rank sparse decomposition (LRSD) model was utilized to separate the RFI signals and the useful signals. Then, the useful signals were restored to the raw data. The simulation experiments and measured data experiments show that the proposed method can effectively mitigate RFI and protect the useful signals whether there are RFI with single source or multiple sources.
As an open system, synthetic aperture radar (SAR) inevitably receives radio frequency interference (RFI) generated by electromagnetic equipment in the same band. The existence of RFI seriously affects SAR signal processing and image interpretation. In recent years, many algorithms and models related to RFI mitigation have been proposed. However, most of that focus on effectively mitigating the RFI is insufficient to protect the useful signals. This article proposes a mitigation method of RFI with a signal-protected capability. (1) The kurtosis coefficient is used to detect RFI pulse-by-pulse, and the echoes containing RFI are stored in matrix form. (2) The preliminary extraction of RFI is complete by low-rank sparse decomposition of the echo matrix containing RFI. (3) For the secondary separation of RFI, the accurate position of RFI in the preliminary extraction results is located by the fuzzy C-means clustering; then, we separate the RFI and the remaining useful signals again and reconstruct the useful signals to complete the mitigation work. The proposed method can further protect useful signals while effectively removing interference through the secondary separation of RFI. Experimental results based on simulated and measured data verify the performance and potential of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.