The poor 5-year survival rate in high-grade osteosarcoma (HOS) has not been increased significantly over the past 30 years. This work aimed to develop a radiomics nomogram for survival prediction at the time of diagnosis in HOS.In this retrospective study, an initial cohort of 102 HOS patients, diagnosed from January 2008 to March 2011, was used as the training cohort. Radiomics features were extracted from the pretreatment diagnostic computed tomography images. A radiomics signature was constructed with the lasso algorithm; then, a radiomics score was calculated to reflect survival probability by using the radiomics signature for each patient. A radiomics nomogram was developed by incorporating the radiomics score and clinical factors. A clinical model was constructed by using clinical factors only. The models were validated in an independent cohort comprising 48 patients diagnosed from April 2011 to April 2012. The performance of the nomogram was assessed with respect to its calibration, discrimination, and clinical usefulness. Kaplan–Meier survival analysis was performed.The radiomics nomogram showed better calibration and classification capacity than the clinical model with AUC 0.86 vs. 0.79 for the training cohort, and 0.84 vs. 0.73 for the validation cohort. Decision curve analysis demonstrated the clinical usefulness of the radiomics nomogram. A significant difference (p-value <.05; log-rank test) was observed between the survival curves of the nomogram-predicted survival and non-survival groups. The radiomics nomogram may assist clinicians in tailoring appropriate therapy.
Summary Obesity-related osteoarthritis (OA) is a complex, multifactorial condition that can cause significant impact on patients’ quality of life. Whilst chronic inflammation, adipocytokines and metabolic factors are considered to be important pathogenic factors in obesity related OA, there has been limited investigation into the biomechanical impact of obesity on OA development. This review aims to demonstrate that mechanical factors are the major pathological cause of obesity-related OA. The effect of obesity on pathological changes to the osteochondral unit and surrounding connective tissues in OA is summarized, as well as the impact of obesity-related excessive and abnormal joint loading, concomitant joint malalignment and muscle weakness. An integrated therapeutic strategy based on this multi-factorial presentation is presented, to assist in the management of obesity related OA. The translational potential of this article Despite the high prevalence of obesity-related OA, there is no specific guideline available for obesity-related OA management. In this review, we demonstrated the pathological changes of obesity-related OA and summarized the impact of biomechanical factors by proposing a hypothetical model of obesity-related OA change. Therapeutic strategies based on adjusting abnormal mechanical effects are presented to assist in the management of obesity-related OA.
The mechanism by which osteosarcomas metastasize is elusive, and challenges remain regarding its treatment with modalities including immunotherapy. CXCL12 is deeply involved in the process of tumor metastasis and T-cell homing, which is driven by a chemokine gradient, but healthy bones are supposed to preferentially express CXCL12. Here, we show for the first time that osteosarcomas epigenetically downregulate CXCL12 expression via DNA methyltransferase 1 (DNMT1) and consequently acquire the ability to metastasize and to impair cytotoxic T-cell homing to the tumor site. Analysis of human osteosarcoma cases further revealed that CXCL12 expression strongly correlated with overall survival. Evaluations on fresh human chemotherapy-free osteosarcoma samples also showed a positive correlation between CXCL12 concentration and the number of intratumoral lymphocytes. Critically, treatment targeting DNMT1 in immunocompetent mouse models significantly elevated expression of CXCL12 in tumors, resulting in a robust immune response and consequently eradicating early lung metastases in addition to suppressing subcutaneous tumor growth. These antitumor effects were abrogated by CXCL12-CXCR4 blockade or CD8 T-cell depletion. Collectively, our data show that CXCL12 regulation plays a significant role in both tumor progression and immune response, and targeting CXCL12 is promising for therapeutics against osteosarcoma. Epigenetic regulation of CXCL12 controls metastasis and immune response in osteosarcoma, suggesting epigenetic therapies or therapies targeting CXCL12 have potential for therapeutic intervention in osteosarcoma. .
Denosumab is a monoclonal antibody against RANK ligand for treatment of giant cell tumor of bone (GCTB). Clinical trials and case series have demonstrated that denosumab is relevant to beneficial tumor response and surgical down-staging in patients of GCTB. However, these trials or case series have limitations with a short follow-up. Recent increasing studies revealed that denosumab probably increased the local recurrence risk in patients treated with curettage. This may be caused by the thicken bone margin of tumor that trapped tumor cells from curettage. The direct bone formation by tumor cells in the margin after denosumab treatment also contributed to the local recurrence. in vitro studies showed denosumab resulted in a cytostatic instead of a true cytotoxic response on neoplastic stromal cells. More importantly, denosumab-treated GCTB exhibited morphologic overlap with malignancy, and a growing number of patients of malignant transformation of GCTB during denosumab treatment have been reported. The optimal duration, long term safety, maintenance dose, and optimum indications remain to be elucidated. With these concerns in mind, this review warns that the denosumab therapy of GCTB should be applied with caution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.