The effect of Cd(2+) on intracellular Ca(2+) homeostasis was examined in renal epithelial A6 cells loaded with Fura-2. Cd(2+) (10 microM to 1 mM) produced a transient spike in cytosolic Ca(2+) in a dose-dependent manner. The phospholipase C inhibitor U73122 and the cation receptor agonist, neomycin, both diminish Cd(2+)-evoked increase in intracellular Ca(2+) ([deltaCa(2+)](Cd)). Further, thapsigargin, an inhibitor of intracellular Ca(2+)-ATPases, significantly reduced [deltaCa(2+)](Cd). Extending these observations, inositol-3-phosphate (IP(3)) binding studies showed that the resting level of intracellular IP(3) underwent a 1.45-fold increase when exposed to Cd(2+). Furthermore, we found that the Cd(2+)-related heavy metals, Zn(2+) and Ni(2+), were even more potent inducers of Ca(2+) mobilization and IP(3) generation than Cd(2+). It can be concluded that Cd(2+), and possibly Zn(2+) and Ni(2+), may act as agonists of a cation-sensing receptor (CSR) belonging to G-protein receptors capable of mediating IP(3) release of Ca(2+) from intracellular stores. The CSR receptor in A6 epithelia could not be stimulated with neomycin or Gd(3+), suggesting that the receptor is different from the calcium-sensing receptor.
Prostaglandins are known to stimulate the active sodium absorption in frog skin. In this paper it is shown that prostaglandin E2 (PGE2) stimulates an active secretion of Cl-, Na+, and K+ from the skin glands in Rana esculenta. The active Cl secretion is enhanced more than the Na and K secretion. Therefore, in skins where the Na absorption is inhibited by amiloride, the addition of PGE2 results in an increase in the short-circuit current (SCC). The PGE2-stimulated Cl secretion could be inhibited by the presence of ouabain or furosemide in the basolateral solution or diphenylamine-2-carboxylate in the apical solution. The PGE2-stimulated Cl secretion was enhanced by the phosphodiesterase inhibitor, theophylline, indicating that the effect of PGE2 was caused by an increase in the intracellular cAMP level in the gland cells. The calcium ionophore A23187, which increases the PGE2 synthesis in frog skin, stimulated the glandular Cl secretion. This secretion could be blocked by the prostaglandin synthesis inhibitor indomethacin, indicating that A23187 acts by increasing the prostaglandin synthesis and not by a direct action of Ca2+ ions per se. The net water flow (Jw) and the Cl secretion were measured simultaneously under the conditions outlined above. The stimulation, inhibition, and the time-course of the outward-directed Jw were similar to the change observed for the Cl secretion. These results show that PGE2 stimulates a glandular secretion of Cl and water in frog skin, probably by increasing the cAMP level in the gland cells.
The aim of the Evaluation-guided Development of New In Vitro Test Batteries (EDIT) multicentre programme is to establish and validate in vitro tests relevant to toxicokinetics and for organ-specific toxicity, to be incorporated into optimal test batteries for the estimation of human acute systemic toxicity. The scientific basis of EDIT is the good prediction of human acute toxicity obtained with three human cell line tests (R2 = 0.77), in the Multicentre Evaluation of In Vitro Cytotoxicity (MEIC) programme. However, the results from the MEIC study indicated that at least two other types of in vitro test ought to be added to the existing test battery to improve the prediction of human acute systemic toxicity — to determine key kinetic events (such as biotransformation and passage through biological barriers), and to predict crucial organ-specific mechanisms not covered by the tests in the MEIC battery. The EDIT programme will be a case-by-case project, but the establishment and validation of new tests will be carried through by a common, step-wise procedure. The Scientific Committee of the EDIT programme defines the need for a specific set of toxicity or toxicokinetic data. Laboratories are then invited to perform the defined tests in order to provide the “missing” data for the EDIT reference chemicals. The results obtained will be evaluated against the MEMO (the MEIC Monograph programme) database, i.e. against human acute systemic lethal and toxicity data. The aim of the round-table discussions at the 19th Scandinavian Society for Cell Toxicology (SSCT) workshop, held in Ringsted, Denmark on 6–9 September 2001, was to identify which tests are the most important for inclusion in the MEIC battery, i.e. which types of tests the EDIT programme should focus on. It was proposed that it is important to include in vitro methods for various kinetic events, such as biotransformation, absorption in the gut, passage across the blood–brain barrier, distribution volumes, protein binding, and renal clearance/accumulation. Models for target organ toxicity were also discussed. Because several of the outlier chemicals (paracetamol, digoxin, malathion, nicotine, paraquat, atropine and potassium cyanide) in the MEIC in vivo–in vitro evaluation have a neurotoxic potential, it was proposed that the development within the EDIT target organ programme should initially be focused on the nervous system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.