The aim of this paper is to quantitatively characterize the appearance, stability, density, and shape of surface nanobubbles on hydrophobic surfaces under varying conditions such as temperature and temperature variation, gas type and concentration, surfactants, and surface treatment. The method we adopt is atomic force microscopy (AFM) operated in the tapping mode. In particular, we show (i) that nanobubbles can slide along grooves under the influence of the AFM tip, (ii) that nanobubbles can spontaneously form by substrate heating, allowing for a comparison of the surface topology with and without the nanobubble, (iii) that a water temperature increase leads to a drastic increase in the nanobubble density, (iv) that pressurizing the water with CO2 also leads to a larger nanobubble density, but typically to smaller nanobubbles, (v) that alcohol-cleaning of the surface is crucial for the formation of surface nanobubbles, (vi) that adding 2-butanol as surfactant leads to considerably smaller surface nanobubbles, and (vii) that flushing water over alcohol-covered surfaces strongly enhances the formation of surface nanobubbles.
Understanding the electronic contact between molybdenum disulfide (MoS2) and metal electrodes is vital for the realization of future MoS2-based electronic devices. Natural MoS2 has the drawback of a high density of both metal and sulfur defects and impurities. We present evidence that subsurface metal-like defects with a density of ∼1011 cm–2 induce negative ionization of the outermost S atom complex. We investigate with high-spatial-resolution surface characterization techniques the effect of these defects on the local conductance of MoS2. Using metal nanocontacts (contact area < 6 nm2), we find that subsurface metal-like defects (and not S-vacancies) drastically decrease the metal/MoS2 Schottky barrier height as compared to that in the pristine regions. The magnitude of this decrease depends on the contact metal. The decrease of the Schottky barrier height is attributed to strong Fermi level pinning at the defects. Indeed, this is demonstrated in the measured pinning factor, which is equal to ∼0.1 at defect locations and ∼0.3 at pristine regions. Our findings are in good agreement with the theoretically predicted values. These defects provide low-resistance conduction paths in MoS2-based nanodevices and will play a prominent role as the device junction contact area decreases in size.
Pt atoms adsorbed onto Ge(001) surface form extremely well-ordered nanowire arrays by self-organization after high-temperature annealing. Using scanning tunneling spectroscopy/microscopy, it is shown that they are metallic and defect free. They are only 0.4 nm thick with a spacing of 1.6 nm in between, and have aspect ratios up to 1000. Their formation can be discussed in terms of a relativistic property possessed by heaviest 5d elements, and the pathway to their formation can be explained by dimer breakup on Ge(001) surface at elevated temperatures followed by a surface polymerization reaction.
Microbubbles produced by exposing water-immersed metallic nanoparticles to resonant light play an important role in emerging and efficient plasmonic-enhanced processes for catalytic conversion, solar energy harvesting, biomedical imaging, and cancer therapy. How do these bubbles form, and what is their gas composition? In this paper, the growth dynamics of nucleating bubbles around laser-irradiated, water-immersed Au plasmonic nanoparticles are studied to determine the exact origin of the occurrence and growth of these bubbles. The microbubbles' contact angle, footprint diameter, and radius of curvature were measured in air-equilibrated water (AEW) and degassed water (DGW) with fast imaging. Our experimental data reveals that the growth dynamics can be divided into two regimes: an initial bubble nucleation phase (regime I, < 10 ms) and, subsequently a bubble growth phase (regime II). The explosive growth in regime I is identical for AEW and DGW due to the vaporization of water. However, the slower growth in regime II is distinctly different for AEW and DGW, which is attributed to the uptake of dissolved gas expelled from the water around the hot nanoparticle. Our scaling analysis reveals that the bubble radius scales with time as R(t) ∝ t for both AEW and DGW in the initial regime I, whereas in the later regime II it scales as R(t) ∝ t for AEW and is constant for perfectly degassed water. These scaling relations are consistent with the experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.