BackgroundIn Escherichia coli the mean and cell-to-cell diversity in RNA numbers of different genes vary widely. This is likely due to different kinetics of transcription initiation, a complex process with multiple rate-limiting steps that affect RNA production.ResultsWe measured the in vivo kinetics of production of individual RNA molecules under the control of the lar promoter in E. coli. From the analysis of the distributions of intervals between transcription events in the regimes of weak and medium induction, we find that the process of transcription initiation of this promoter involves a sequential mechanism with two main rate-limiting steps, each lasting hundreds of seconds. Both steps become faster with increasing induction by IPTG and Arabinose.ConclusionsThe two rate-limiting steps in initiation are found to be important regulators of the dynamics of RNA production under the control of the lar promoter in the regimes of weak and medium induction. Variability in the intervals between consecutive RNA productions is much lower than if there was only one rate-limiting step with a duration following an exponential distribution. The methodology proposed here to analyze the in vivo dynamics of transcription may be applicable at a genome-wide scale and provide valuable insight into the dynamics of prokaryotic genetic networks.
BackgroundActivation and differentiation of T-helper (Th) cells into Th1 and Th2 types is a complex process orchestrated by distinct gene activation programs engaging a number of genes. This process is crucial for a robust immune response and an imbalance might lead to disease states such as autoimmune diseases or allergy. Therefore, identification of genes involved in this process is paramount to further understand the pathogenesis of, and design interventions for, immune-mediated diseases.MethodsWe aimed at identifying protein-coding genes and long non-coding RNAs (lncRNAs) involved in early differentiation of T-helper cells by transcriptome analysis of cord blood-derived naïve precursor, primary and polarized cells.ResultsHere, we identified lineage-specific genes involved in early differentiation of Th1 and Th2 subsets by integrating transcriptional profiling data from multiple platforms. We have obtained a high confidence list of genes as well as a list of novel genes by employing more than one profiling platform. We show that the density of lineage-specific epigenetic marks is higher around lineage-specific genes than anywhere else in the genome. Based on next-generation sequencing data we identified lineage-specific lncRNAs involved in early Th1 and Th2 differentiation and predicted their expected functions through Gene Ontology analysis. We show that there is a positive trend in the expression of the closest lineage-specific lncRNA and gene pairs. We also found out that there is an enrichment of disease SNPs around a number of lncRNAs identified, suggesting that these lncRNAs might play a role in the etiology of autoimmune diseases.ConclusionThe results presented here show the involvement of several new actors in the early differentiation of T-helper cells and will be a valuable resource for better understanding of autoimmune processes.Electronic supplementary materialThe online version of this article (doi:10.1186/s13073-015-0237-0) contains supplementary material, which is available to authorized users.
Motivation Metabolic flux balance analysis (FBA) is a standard tool in analyzing metabolic reaction rates compatible with measurements, steady-state and the metabolic reaction network stoichiometry. Flux analysis methods commonly place model assumptions on fluxes due to the convenience of formulating the problem as a linear programing model, while many methods do not consider the inherent uncertainty in flux estimates. Results We introduce a novel paradigm of Bayesian metabolic flux analysis that models the reactions of the whole genome-scale cellular system in probabilistic terms, and can infer the full flux vector distribution of genome-scale metabolic systems based on exchange and intracellular (e.g. 13C) flux measurements, steady-state assumptions, and objective function assumptions. The Bayesian model couples all fluxes jointly together in a simple truncated multivariate posterior distribution, which reveals informative flux couplings. Our model is a plug-in replacement to conventional metabolic balance methods, such as FBA. Our experiments indicate that we can characterize the genome-scale flux covariances, reveal flux couplings, and determine more intracellular unobserved fluxes in Clostridium acetobutylicum from 13C data than flux variability analysis. Availability and implementation The COBRA compatible software is available at github.com/markusheinonen/bamfa. Supplementary information Supplementary data are available at Bioinformatics online.
We introduce a novel paradigm for learning non-parametric drift and diffusion functions for stochastic differential equation (SDE). The proposed model learns to simulate path distributions that match observations with non-uniform time increments and arbitrary sparseness, which is in contrast with gradient matching that does not optimize simulated responses. We formulate sensitivity equations for learning and demonstrate that our general stochastic distribution optimisation leads to robust and efficient learning of SDE systems.
Little is known about the biological mechanisms that shape the distribution of intervals between the completion of RNA molecules (T(p)RNA) , and thus transcriptional noise. We characterize numerically and analytically how the promoter open complex delay (tau(P)) and the transcription initiation rate (k(t)) shape T(p)RNA. From this, we assess the noise and mean of transcript levels and show that these can be tuned both independently and simultaneously by tau(P) and k(t). Finally, we characterize how tau(P) affects bursting in RNA production and show that the tau(P) measured for a lac promoter best fits independent measurements of the burst distribution of the same promoter. Since tau(P) affects noise in gene expression, and given that it is sequence dependent, it is likely to be evolvable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.