Tinplate is used to food packaging and other types of packages. The corrosion resistance of the tinplate has been study due the necessity of an alternative to high environmental impact of chromatization process. Therefore protective coatings as hybrid films base elaborations with different acids are studied to improve the barrier effect against corrosion. The objective of this work is characterize hybrid films deposited on a tinplate from a sol made up of the alkoxide precursors 3-(trimethoxysilylpropyl) methacrylate (TMSM), tetraethoxysilane (TEOS) and poly(methyl methacrylate) (PMMA) together with one of three acids (acetic, hydrochloric or nitric acid) and to verify their action against the corrosion of the substrate. The films were obtained by a dip-coating process and cured for 3 hours at 160 °C. The film hydrophobicity was determined by contact angle measurements, and the morphology was evaluated by SEM. FTIR measurements were performed to characterize the chemical structures of the films. The electrochemical behavior of the coatings was evaluated by techniques open circuit potential monitoring (OCP), potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results demonstrate that the siloxane-PMMA films improve the protective properties of the tinplate, with the films obtained by acetic acid addition exhibiting the greatest improvement.
This study proposes a new pretreatment method that uses alkoxide precursors with a plasticizing agent; the purpose of this study is to improve the electrochemical and mechanical properties of a galvanized steel surface. Galvanized steel was covered with a hybrid film obtained from a sol that consisted of two alkoxide precursors, 3 -(trimethoxysilylpropyl) methacrylate (TMSM) and tetraethoxysilane (TEOS), with nitrate cerium in a concentration of 0.01 M and a polyethylene glycol (PEG) plasticizer. The hybrid coatings were obtained by dip-coating method with various concentrations of plasticizer (0, 20, 40 and 60 g.L -1 ). The hybrid films were analyzed by scanning electron microscopy (SEM), profilometry, contact angle measurements, a tribometer with the type-setting ball on the plate and electrochemical tests. The addition of the plasticizer into the hybrid films improves the corrosion resistance behavior compared to the sample without the plasticizer. The addition of 20 g.L -1 of plasticizer showed the best performance in the electrochemical tests. The mechanical behavior results indicated that higher PEG concentrations resulted in films with enhanced durability.
The tetraethoxysilane (TEOS) influences morphological and electrochemical properties of hybrid films by function of concentration. Moreover, the use of acetic acid as a catalyst in the sol enables a more complete hydrolysis of the silane precursors due to the fact that the acetic acid goes through a more complete ionization when in aqueous solution. The aim of this paper is to study the effect of the concentration of tetraethoxysilane (TEOS) on the protective properties of the film on tinplate substrate. The tinplate was coated with a hybrid film obtained from a sol-gel method constituted of the following alkoxide precursors: 3 -(trimetoxisililpropil) methacrylate (TMSM) and poly(methyl methacrylate) PMMA. The effect of tetraethoxysilane (TEOS) concentration has also been evaluated. The films hydrolysis was performed at a pH value of 3.0 using acetic acid as a catalyst. The films were obtained by dip-coating process, cured for 3 hours at 160 °C. The film morphology was evaluated by SEM and profilometry. The electrochemical behavior of the films was evaluated by open circuit potential monitoring, potentiodynamic polarization and electrochemical impedance spectroscopy. The film hydrophobicity was determined by contact angle measurements. The studied films have shown good performance as to corrosion resistance on tinplate. The hybrid film which was obtained through the addition of an excessive amount of TEOS (T3A3) showed increased thickness. Nevertheless, due to an intense densification of the film, promoted by the addition of TEOS, a formation of cracks was registered, thereby compromising the corrosion resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.