The climate in Ambon, are influenced by sea climate and season climate, cause of this island arrounded by sea, it is make very high rainfall intensity. A very high collinearity between independent variables, make the estimate can not rely be ordinary least square method so it market with not real regretion coefficient and the collinearity. Collinearity can be detected by linier correlation coefficient between independent variables and also with VIF way. Regretion principal component analysis is used to remove collinearity and all of independent variable into model, this analysis is regretion analysis technique wher eare combinated with principal component analysis technique. The object of this analysis is to simplify the variable by overcast it dimension, we can do it removes the correlation between coefficient by transformation. Regresion can help to solve this case rainfall in Ambon on 2010. So the colinearity to independent variables can be overcome and then we can get the best regretion rutes.
The type of earthquake that is most often felt in Indonesia is tectonic earthquakes. This type of earthquake is caused by the movement of the earth’s crust due power generated by tectonic plate shifts. Province of Nusa Tenggara Barat is one of the earthquake prone areas in Indonesia. In this research, we will analysis of tectonic earthquakes characteristics in Province of Nusa Tenggara Barat by descriptive statistics concept approach and analysis type of data distribution earthquakes 2018. The Data used are tectonic earthquakes 2018 in Province of Nusa Tenggara Barat of Indonesia and sourced from the USGS earthquake catalog. The results of this study can be used as a reference for the Government of Indonesia and Province of Nusa Tenggara Barat in disaster mitigation planning in Province of Nusa Tenggara Barat.
The gamma distribution is one of special continuous random variable distribution with scale parameter and shape parameter where is positive real numbers. On some conditions the gamma distribution astablishes other continuous distributions which are then called special cases of the gamma distribution. Therefore, this study was conducted to determine the properties of gamma distribution and the characteristics of the special cases of gamma distribution by analyzed the theories from literatures. The properties of gamma distribution include expectation value, variance, moment generating function, characteristic function, and estimation of gamma distribution parameters with the moment method to earn the special cases of the gamma distribution are Erlang, exponential, chi-square, and beta distributions.
Meningkatnya persaingan yang kompetitif dalam perkembangan ekonomi setiap perusahaan yang bergerak di bidang industri mengharuskan perusahaan dapat memenangkan persaingan dengan memperhatikan persediaan barang agar mendapatkan keuntungan yang maksimal. Maka dari itu perencanaan jumlah produk sangat penting agar dapat memenuhi semua permintaan yang ada. Pada penelitian ini membahas tentang penerapan Fuzzy Inference System tipe Mamdani untuk menentukan jumlah produksi berdasarkan data jumlah persediaan dan permintaan pada Pabrik Cinderela Bread House dengan menggunakan bantuan Software Matlab untuk mengetahui jumlah produk roti yang harus diproduksi berdasarkan data jumlah persediaan dan permintaan. Penerapan Fuzzy Inference System tipe Mamdani dalam menentukan jumlah produksi roti berdasarkan data jumlah persediaan dan permintaan dapat membantu perusahaan dalam mengambil keputusan dengan nilai keakuratan 90.26633% dan nilai kesalahan 9.77367%.
Kata Kunci : Fuzzy Inference System, Logika Fuzzy, Permintaan, Persediaan, Produksi
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.