Although several authors have studied 3D forming using the press forming process, the gas tightness of polymer-coated paperboard trays has not been widely researched. In this paper, the effect of blank holding force on the surface quality and tightness of press-formed paperboard trays was researched. The press-formed trays were heat-sealed with a multilayer polymer lid. The tightness of the trays was analyzed by following the oxygen content of the packages over the course of 14 d and by using a penetrant coloring solution to locate possible leaks. The results indicate that the blank holding force had a great effect on the quality and tightness of the trays, especially in the case of a rectangular geometry. The geometry of the formed trays played a significant role in process parameter selection, and more demanding geometries emphasize the importance of parameter optimization. However, with the correctly selected parameters, the use of modified atmospheric packaging (MAP) in polymer coated paperboard trays was shown to be possible. The oxygen content of both analyzed geometries was found to be less than 1% 14 d after sealing. It was also demonstrated that the gas tightness of a seal cannot be confirmed using a penetrant solution test exclusively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.