Polyvinyl acetal (PVA) brush cleaning is one of the most important processes in the post chemical mechanical planarization (CMP) cleaning process. However, PVA brush could be severely contaminated due to strong direct contact with a large amount of abrasive particles during the long-time post CMP cleaning, and the particles on the brush can be easily transported to the next wafer substrate. In this study, we tested four different types of conditioning processes to remove the particles from the brush to increase the cleaning efficiency of post CMP process and comparatively evaluated using FE-SEM. The physical scrubbing method showed higher cleaning efficiency than the chemically dipping method, but some abrasive particles remained on the non-contacted surface. The flow-through method using pH 11 showed the higher removal ability than pH 3 and 7 due to strong repulsive force between silica abrasive particle and PVA brush, but some abrasive particles remained due to non-uniform flow of chemicals. The ultrasonication method with DIW was found to be very effective to remove the particles completely from the brush without damage. Consequently, the new developed conditioning process provides an environmentally friendly and cost effective alternative conditioning process to the existing conditioning process of contaminated PVA brushes.
Corrosion inhibitors play a key role in obtaining global planarization and protecting against corrosion during copper CMP. However, these inhibitors leave organic residues and increase particle contamination after the CMP process, which can directly affect the device yield. Cu CMP is usually performed with a slurry containing silica particles and a BTA corrosion inhibitor. High levels of organic defects and particle contamination are produced due to the high concentration of BTA used to meet CMP requirements. In this work a suitable corrosion inhibitor, 5-methyl-benzotriazole (MBTA), is proposed and used at an optimized concentration to remove organic residues and particle contamination effectively during the post-CMP process. The optimum inhibitor concentration was estimated for BTA and MBTA. Based on etching and EIS studies, it was found that a lower concentration of MBTA (relative to BTA) is needed to provide the conditions required for CMP. The passivation layer formed by MBTA can be removed easily during the post-CMP process. Thus, our results indicate that it is possible to reduce the concentration of the inhibitor while maintaining the same corrosion inhibition efficiency, thereby reducing the particle and organic defect levels.
A systematic study of the adsorption of benzotriazole on Co surface and its removal in aqueous solutions was carried out for post-CMP cleaning application. Static etch rate (SER) measurements and electrochemical impedance spectroscopy (EIS) were employed. The experimental results show that BTA adsorbed well on Co surface when it exposed to BTA solution at neutral and alkaline pH. BTA did not adsorb due to active Co dissolution at acidic pH. The effect of dissolved oxygen (DO) concentration in de-ionized (DI) water on the removal of Co-BTA complex layer was investigated. At DI water rinse process after BTA treatment, Co-BTA layer was maintained on Co surface when DO concentration of DI water was low. Interestingly, BTA was removed by DI water with high DO concentration.
A non-destructive metrology technique for critical dimension of Fin structure is important for better device characterization and development for improving yield. Due to extremely small dimension with high complexity in FinFET a new metrology solution needs to be evaluated. In-line atomic resolution profiler was performed to provide a suitable metrology for oxide recess metrology in Fin process. The technique could measure accurately the height and CD of Fin structures, which has the space with of 25 nm and the height of 60 nm. The uniformity of recess height could be measured, which could be interpreted by loading effect of etch process. High long term repeatability of the technique was achieved for process monitoring purpose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.