Polyvinyl acetal (PVA) brush cleaning is one of the most important processes in the post chemical mechanical planarization (CMP) cleaning process. However, PVA brush could be severely contaminated due to strong direct contact with a large amount of abrasive particles during the long-time post CMP cleaning, and the particles on the brush can be easily transported to the next wafer substrate. In this study, we tested four different types of conditioning processes to remove the particles from the brush to increase the cleaning efficiency of post CMP process and comparatively evaluated using FE-SEM. The physical scrubbing method showed higher cleaning efficiency than the chemically dipping method, but some abrasive particles remained on the non-contacted surface. The flow-through method using pH 11 showed the higher removal ability than pH 3 and 7 due to strong repulsive force between silica abrasive particle and PVA brush, but some abrasive particles remained due to non-uniform flow of chemicals. The ultrasonication method with DIW was found to be very effective to remove the particles completely from the brush without damage. Consequently, the new developed conditioning process provides an environmentally friendly and cost effective alternative conditioning process to the existing conditioning process of contaminated PVA brushes.
In this study, the development of post-chemical mechanical polishing (CMP) protocols for cleaning abrasive nanoparticles from In0.53Ga0.47As surfaces was systematically analyzed. Abrasive silica nanoparticles (130 and 289 nm) were intentionally deposited onto InGaAs surfaces. Various concentration ratios of chemical etchants such as HCl and H2O2 were used to control material loss and surface oxides of InGaAs. The optimal concentration ratio of the HCl/H2O2 cleaning solution exhibited 40% particle removal efficiency (PRE). Application of megasonic (MS) cleaning improved the PRE to 80%. To prevent particle re-contamination, ammonium dodecyl sulfate (ADS) was used as an anionic surfactant to modify surface charge in the InGaAs substrate. Addition of surfactant further improved the PRE to over 96%. Optimal cleaning of InGaAs surfaces was achieved with a combination of HCl/H2O2, surfactant, and MS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.