Hot electrons established by the absorption of high-energy photons typically thermalize on a picosecond time scale in a semiconductor, dissipating energy via various phonon-mediated relaxation pathways. Here it is shown that a strong hot carrier distribution can be produced using a type-II quantum well structure. In such systems it is shown that the dominant hot carrier thermalization process is limited by the radiative recombination lifetime of electrons with reduced wavefunction overlap with holes. It is proposed that the subsequent reabsorption of acoustic and optical phonons is facilitated by a mismatch in phonon dispersions at the InAs-AlAsSb interface and serves to further stabilize hot electrons in this system. This lengthens the time scale for thermalization to nanoseconds and results in a hot electron distribution with a temperature of 490 K for a quantum well structure under steady-state illumination at room temperature.
A type-II InAs/AlAs$$_{0.16}$$ 0.16 Sb$$_{0.84}$$ 0.84 multiple-quantum well sample is investigated for the photoexcited carrier dynamics as a function of excitation photon energy and lattice temperature. Time-resolved measurements are performed using a near-infrared pump pulse, with photon energies near to and above the band gap, probed with a terahertz probe pulse. The transient terahertz absorption is characterized by a multi-rise, multi-decay function that captures long-lived decay times and a metastable state for an excess-photon energy of $$>100$$ > 100 meV. For sufficient excess-photon energy, excitation of the metastable state is followed by a transition to the long-lived states. Excitation dependence of the long-lived states map onto a nearly-direct band gap ($$E{_g}$$ E g ) density of states with an Urbach tail below $$E{_g}$$ E g . As temperature increases, the long-lived decay times increase $$<E{_g}$$ < E g , due to the increased phonon interaction of the unintentional defect states, and by phonon stabilization of the hot carriers $$>E{_g}$$ > E g . Additionally, Auger (and/or trap-assisted Auger) scattering above the onset of the plateau may also contribute to longer hot-carrier lifetimes. Meanwhile, the initial decay component shows strong dependence on excitation energy and temperature, reflecting the complicated initial transfer of energy between valence-band and defect states, indicating methods to further prolong hot carriers for technological applications.
Terahertz time-domain spectroscopy is employed to investigate temperaturedependent properties of bulk chalcopyrite crystals (CdGeP2, ZnGeP2 and CdSiP2). The complex spectra provide the refraction and absorption as a function of temperature, from which electron-phonon coupling and average phonon energies are extracted and linked to the mechanics of the A-and B-site cations. Also, AC conductivity spectra provide carrier densities and electron scattering times, the temperature dependence of which is associated with unintentional shallow dopants. Temperature dependence of the scattering time are converted into carrier mobility and modeled with microscopic transport mechanisms such as polar optical phonon, acoustic phonons, deformation potential, ionized impurity and dislocation scattering. Hence, analysis links the THz optical and electronic properties to relate microscopic carrier transport and carrier-lattice interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.