We present a novel all-fiber pumped OPCPA architecture to generate self-CEP stable, sub-8 optical cycle duration pulses at 7-micron wavelength approaching millijoulelevel pulse energy at 100 Hz repetition rate. The system yields a peak power of 1.1 GW and, if focused to the diffraction limit, would reach a peak intensity of 7x10 14 W/cm 2. The OPCPA is pumped by a 2-micron Ho:YLF chirped pulse amplifier to leverage the highly efficient and broadband response of the nonlinear crystal ZGP. The 7-micron seed at 100 MHz is generated via DFG from an Er:Tm:Ho multi-arm fiber frequency comb and a fraction of its output optically injects the Ho:YLF amplifier. While the pulse bandwidth at 7 micron is perfectly suited for nonlinear and spectroscopic applications, current parameters offer, for the first time, the possibility to explore strong field physics in an entirely new wavelength range with a ponderomotive force 77 times larger than from an 800 nm source. The overall OPCPA system is very compact and provides a new tool for investigations directly in the molecular finger print region of the electromagnetic spectrum or to drive high harmonic generation to produce fully coherent X-rays in the multi-keV range and possibly zeptosecond temporal waveforms.
The study of metal-insulator transition (MIT) in VO2 thin films synthesized by means of rf sputtering from a VO2 target is presented. A comparison with conventional reactive sputtering from a V target is also given. Detailed x-ray diffraction analysis, electrical resistance switching, and infrared optical reflectance measurements confirm that our sputtering technique yields high-quality VO2 films. We discuss in depth how synthesis conditions affect MIT parameters derived from temperature dependence of electrical resistance. Sharp MIT is observed in films sputtered on technologically important Si substrates. The choice of Si (or sapphire) substrates results in the transition temperature above (below) the values obtained for single VO2 crystals. The MIT becomes narrower and stronger in thinner films. This is consistent with the assumption that the increased width of the MIT in thin films with respect to single crystals is the result of averaging of the transition parameters over a distribution of crystallites in the film. The measurements of MIT in VO2 patterned into devices do not reveal a noticeable lateral size effect down to 20 μm devices, encouraging use of the phase transition in switching electronic devices. The effect of substrate temperature and ambient during the sputtering on MIT is discussed. While VO2 films are found to be stable in ambient environment with time, the additional exposure to UV radiation near room temperature is shown to enhance the oxidation kinetics and produce changes in film resistance. Using UV radiation as an additional tool to control the oxidation process during VO2 synthesis may allow the synthesis temperature to be lowered and an improvement in material quality. We anticipate these results may be of relevance to synthesizing functional oxide films with potential applications in electronics and sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.