This study introduces a simple in vitro arrangement to measure current densities of implant metals. The in vivo condition of a metallic implant lying in tissues exhibiting different redox potentials is simulated in so-called straddle tests by applying a constant potential difference of 250 mV in saline containing the stable, fast-reacting redox system K4Fe(CN)6/K3Fe(CN)6. From a variety of corrosion-resistant implant metals and alloys, gold showed the highest current densities, followed by the stainless steel, the cobalt-based alloy, and the TiAIV-alloy. The pure metals titanium, niobium, and tantalum showed the lowest values. This can be explained by the stable oxide layer on these base metals, preventing an exchange of electrons and thus any redox reaction. This rating of metallic implant materials based on in vitro measurements of current densities is in good accordance with their biocompatibility rating reported from in vivo experiences. It seems that simple and cheap electrochemical tests allow an even more precise differentiation of the suitability of metallic materials for implant purposes than most of the conventional implantation tests, considering that biocompatibility is not only determined by corrosion products, but also by exchange currents and reaction products of redox processes involving tissue compounds.
Ermittlung der Gleichgewichtslöslichkeit und der Diffusionsgeschwindigkeit von Wasserstoff in Stahlproben nach einem Effusionsverfahren. Abhängigkeit der Löslichkeit und der Beweglichkeit vom Legierungsgehalt und der Glühtemperatur. Auswahl geeigneter Glühbedingungen zur Bestimmung des Wasserstoffgehaltes von Stahl‐ und Schweißproben nach dem Warmextraktionsverfahren. Wasserstoffgehalt in einer Induktorwelle in Abhängigkeit vom Radius und der Glühbehandlung.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.