Many cereals accumulate hydroxamic acids derived from 2-hydroxy-2H-1,4-benzoxazin-3(4H)-one. These benzoxazinoid hydroxamic acids are involved in defense of maize against various lepidopteran pests, most notably the European corn borer, in defense of cereals against various aphid species, and in allelopathy affecting the growth of weeds associated with rye and wheat crops. The role of benzoxazinoid hydroxamic acids in defense against fungal infection is less clear and seems to depend on the nature of the interactions at the plant-fungus interface. Efficient use of benzoxazinoid hydroxamic acids as resistance factors has been limited by the inability to selectively increase their levels at the plant growth stage and the plant tissues where they are mostly needed for a given pest. Although the biosynthesis of benzoxazinoid hydroxamic acids has been elucidated, the genes and mechanisms controlling their differential expression in different plant tissues and along plant ontogeny remain to be unraveled.
Abstract-The evolution of the diversity in plant secondary compounds is often thought to be driven by insect herbivores, although there is little empirical evidence for this assumption. To investigate whether generalist insect herbivores could play a role in the evolution of the diversity of related compounds, we examined if (1) related compounds differ in their effects on generalists, (2) there is a synergistic effect among compounds, and (3) effects of related compounds differed among insect species. The effects of pyrrolizidine alkaloids (PAs) were tested on five generalist insect herbivore species of several genera using artificial diets or neutral substrates to which PAs were added. We found evidence that structurally related PAs differed in their effects to the thrips Frankliniella occidentalis, the aphid Myzus persicae, and the locust Locusta migratoria. The individual PAs had no effect on Spodoptera exigua and Mamestra brassicae caterpillars. For S. exigua, we found indications for synergistic deterrent effects of PAs in PA mixtures. The relative effects of PAs differed between insect species. The PA senkirkine had the strongest effect on the thrips, but had no effect at all on the aphids. results show that generalist herbivores could potentially play a role in the evolution and maintenance of the diversity of PAs.
In Chile, the aphid Sitobion avenae is of recent introduction, lives on cultivated and wild Poaceae, and is thought to reproduce by permanent parthenogenesis. In order to study the genetic variability and population structure of this species, five microsatellite loci were typed from individual aphids collected from different cultivated and wild host plants, from different geographical zones, and years. Chilean populations showed a high degree of heterozygosity and a low genetic variability across regions and years, with four predominant genotypes representing nearly 90% of the sample. This pattern of low clonal diversity and high heterozygosity was interpreted as the result of recent founder events from a few asexually reproducing genotypes. Most geographical and temporal variation observed in the genetic composition resulted from fluctuations of a few predominant clones. In addition, comparisons of the genotypes found in Chile with those described in earlier surveys of S. avenae populations in Western Europe led us to identify 'superclones' with large geographical distribution and high ecological success, and to make a preliminary exploration of the putative origin(s) of S. avenae individuals introduced to Chile. Heredity (2005) 95, 24-33.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.