Current predictions on species responses to climate change strongly rely on projecting altered environmental conditions on species distributions. However, it is increasingly acknowledged that climate change also influences species interactions. We review and synthesize literature information on biotic interactions and use it to argue that the abundance of species and the direction of selection during climate change vary depending on how their trophic interactions become disrupted. Plant abundance can be controlled by aboveground and belowground multitrophic level interactions with herbivores, pathogens, symbionts and their enemies. We discuss how these interactions may alter during climate change and the resulting species range shifts. We suggest conceptual analogies between species responses to climate warming and exotic species introduced in new ranges. There are also important differences: the herbivores, pathogens and mutualistic symbionts of rangeexpanding species and their enemies may co-migrate, and the continuous gene flow under climate warming can make adaptation in the expansion zone of range expanders different from that of cross-continental exotic species. We conclude that under climate change, results of altered species interactions may vary, ranging from species becoming rare to disproportionately abundant. Taking these possibilities into account will provide a new perspective on predicting species distribution under climate change.
When previously isolated populations meet and mix, the resulting admixed population can benefit from several genetic advantages, including increased genetic variation, the creation of novel genotypes and the masking of deleterious mutations. These admixture benefits are thought to play an important role in biological invasions. In contrast, populations in their native range often remain differentiated and frequently suffer from inbreeding depression owing to isolation. While the advantages of admixture are evident for introduced populations that experienced recent bottlenecks or that face novel selection pressures, it is less obvious why native range populations do not similarly benefit from admixture. Here we argue that a temporary loss of local adaptation in recent invaders fundamentally alters the fitness consequences of admixture. In native populations, selection against dilution of the locally adapted gene pool inhibits unconstrained admixture and reinforces population isolation, with some level of inbreeding depression as an expected consequence. We show that admixture is selected against despite significant inbreeding depression because the benefits of local adaptation are greater than the cost of inbreeding. In contrast, introduced populations that have not yet established a pattern of local adaptation can freely reap the benefits of admixture. There can be strong selection for admixture because it instantly lifts the inbreeding depression that had built up in isolated parental populations. Recent work in Silene suggests that reduced inbreeding depression associated with post-introduction admixture may contribute to enhanced fitness of invasive populations. We hypothesize that in locally adapted populations, the benefits of local adaptation are balanced against an inbreeding cost that could develop in part owing to the isolating effect of local adaptation itself. The inbreeding cost can be revealed in admixing populations during recent invasions.
Summary1 Adaptation of plant populations to local environments has been shown in many species but local adaptation is not always apparent and spatial scales of differentiation are not well known. In a reciprocal transplant experiment we tested whether: (i) three widespread grassland species are locally adapted at a European scale; (ii) detection of local adaptation depends on competition with the local plant community; and (iii) local differentiation between neighbouring populations from contrasting habitats can be stronger than differentiation at a European scale. 2 Seeds of Holcus lanatus, Lotus corniculatus and Plantago lanceolata from a Swiss, Czech and UK population were sown in a reciprocal transplant experiment at fields that exhibit environmental conditions similar to the source sites. Seedling emergence, survival, growth and reproduction were recorded for two consecutive years. 3 The effect of competition was tested by comparing individuals in weeded monocultures with plants sown together with species from the local grassland community. To compare large-scale vs. small-scale differentiation, a neighbouring population from a contrasting habitat (wet-dry contrast) was compared with the 'home' and 'foreign' populations. 4 In P. lanceolata and H. lanatus, a significant home-site advantage was detected in fitnessrelated traits, thus indicating local adaptation. In L. corniculatus, an overall superiority of one provenance was found. 5 The detection of local adaptation depended on competition with the local plant community. In the absence of competition the home-site advantage was underestimated in P. lanceolata and overestimated in H. lanatus. 6 A significant population differentiation between contrasting local habitats was found. In some traits, this small-scale was greater than large-scale differentiation between countries. 7 Our results indicate that local adaptation in real plant communities cannot necessarily be predicted from plants grown in weeded monocultures and that tests on the relationship between fitness and geographical distance have to account for habitat-dependent small-scale differentiation. Considering the strong small-scale differentiation, a local provenance from a different habitat may not be the best choice in ecological restoration if distant populations from a more similar habitat are available.
Evolutionary theory suggests that divergent natural selection in heterogeneous environments can result in locally adapted plant genotypes. To understand local adaptation it is important to study the ecological factors responsible for divergent selection. At a continental scale, variation in climate can be important while at a local scale soil properties could also play a role. We designed an experiment aimed to disentangle the role of climate and (abiotic and biotic) soil properties in local adaptation of two common plant species. A grass (Holcus lanatus) and a legume (Lotus corniculatus), as well as their local soils, were reciprocally transplanted between three sites across an Atlantic-Continental gradient in Europe and grown in common gardens in either their home soil or foreign soils. Growth and reproductive traits were measured over two growing seasons. In both species, we found significant environmental and genetic effects on most of the growth and reproductive traits and a significant interaction between the two environmental effects of soil and climate. The grass species showed significant home site advantage in most of the fitness components, which indicated adaptation to climate. We found no indication that the grass was adapted to local soil conditions. The legume showed a significant home soil advantage for number of fruits only and thus a weak indication of adaptation to soil and no adaptation to climate. Our results show that the importance of climate and soil factors as drivers of local adaptation is species-dependent. This could be related to differences in interactions between plant species and soil biota.
Abstract-The evolution of the diversity in plant secondary compounds is often thought to be driven by insect herbivores, although there is little empirical evidence for this assumption. To investigate whether generalist insect herbivores could play a role in the evolution of the diversity of related compounds, we examined if (1) related compounds differ in their effects on generalists, (2) there is a synergistic effect among compounds, and (3) effects of related compounds differed among insect species. The effects of pyrrolizidine alkaloids (PAs) were tested on five generalist insect herbivore species of several genera using artificial diets or neutral substrates to which PAs were added. We found evidence that structurally related PAs differed in their effects to the thrips Frankliniella occidentalis, the aphid Myzus persicae, and the locust Locusta migratoria. The individual PAs had no effect on Spodoptera exigua and Mamestra brassicae caterpillars. For S. exigua, we found indications for synergistic deterrent effects of PAs in PA mixtures. The relative effects of PAs differed between insect species. The PA senkirkine had the strongest effect on the thrips, but had no effect at all on the aphids. results show that generalist herbivores could potentially play a role in the evolution and maintenance of the diversity of PAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.