This paper presents the use of micro-Doppler signatures collected by a multistatic radar to detect and discriminate between micro-drones hovering and flying while carrying different payloads, which may be an indication of unusual or potentially hostile activities. Different features have been extracted and tested, namely features related to the Radar Cross Section of the micro-drones, as well as the Singular Value Decomposition (SVD) and centroid of the micro-Doppler signatures. In particular, the added benefit of using multistatic information in comparison with conventional radar is quantified. Classification performance when identifying the weight of the payload that the drone was carrying while hovering was found to be consistently above 96% using the centroid-based features and multistatic information. For the non-hovering scenarios classification results with accuracy above 95% were also demonstrated in preliminary tests in discriminating between three different payload weights.
This letter presents preliminary results on the use of multistatic radar and micro-Doppler analysis to detect and discriminate between microdrones hovering carrying different payloads. Two suitable features related to the centroid of the micro-Doppler signature have been identified and used to perform classification, investigating also the added benefit of using information from a multistatic radar as opposed to a conventional monostatic system. Very good performance with accuracy above 90% has been demonstrated for the classification of hovering micro-drones.
More than two decades after the publication of Cornish's seminal work about the scripttheoretic approach to crime analysis, this article examines how the concept has been applied in our community. The study provides evidence confirming that the approach is increasingly popular; and takes stock of crime scripting practices through a systematic review of over one hundred scripts published between 1994 and 2018. The results offer the first comprehensive picture of this approach, and highlights new directions for those interested in using data from cyber-systems and the Internet of Things to develop effective situational crime prevention measures.
This paper uses resilience as a lens through which to analyse disasters and other major threats to patterns of criminal behaviour. A set of indicators and mathematical models are introduced that aim to quantitatively describe changes in crime levels in comparison to what could otherwise be expected, and what might be expected by way of adaptation and subsequent resumption of those patterns. The validity of the proposed resilience assessment tool is demonstrated using commercial theft data from the COVID-19 pandemic period. A 64 per cent reduction in crime was found in the studied city (China) during an 83-day period, before daily crime levels bounced back to higher than expected values. The proposed resilience indicators are recommended as benchmarking instruments for evaluating and comparing the global impact of COVID-19 policies on crime and public safety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.