This paper documents the condition-based maintenance (CBM) of power transformers, the analysis of which relies on two basic data groups: structured (e.g., numeric and categorical) and unstructured (e.g., natural language text narratives) which accounts for 80% of data required. However, unstructured data comprised of malfunction inspection reports, as recorded by operation and maintenance of the power grid, constitutes an abundant untapped source of power insights. This paper proposes a method for malfunction inspection report processing by deep learning, which combines the text data mining-oriented recurrent neural networks (RNN) with long short-term memory (LSTM). In this paper, the effectiveness of the RNN-LSTM network for modeling inspection data is established with a straightforward training strategy in which we replicate targets at each sequence step. Then, the corresponding fault labels are given in datasets, in order to calculate the accuracy of fault classification by comparison with the original data labels and output samples. Experimental results can reflect how key parameters may be selected in the configuration of the key variables to achieve optimal results. The accuracy of the fault recognition demonstrates that the method we proposed can provide a more effective way for grid inspection personnel to deal with unstructured data.
Abstract:With a higher penetration of distributed generation in the power system, the application of microgrids is expected to increase dramatically in the future. This paper proposes a novel method to design optimal droop coefficients of dispatchable distributed energy resources for a microgrid in the Energy Internet considering the volatility of renewable energy generation, such as wind and photovoltaics. The uncertainties of renewable energy generation are modeled by a limited number of scenarios with high probabilities. In order to achieve stable and economical operation of a microgrid that is also suitable for plug-and-play distributed renewable energy and distributed energy storage devices, a multi-objective optimization model of droop coefficients compromising between operational cost and the integral of time-weighted absolute error criterion is developed. The optimization is solved by using a differential evolution algorithm. Case studies demonstrate that the economy and transient behavior of microgrids in the Energy Internet can both be improved significantly using the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.