A major limitation of piezoelectric translator ͑PZT͒ actuators is their lack of accuracy originated from the hysteresis and creep. Nevertheless the creep phenomenon is an important factor in many applications of PZT actuators, but it has been investigated less frequently in comparison with the displacement hysteresis. In this article, we present a basic creep model with some parameters that have hysteresis properties which make it possible to predict an open loop response of PZT actuators based on these properties.
Background: Stress is associated with activation of the sympathetic nervous system, and can lead to lasting alterations in autonomic function and in extreme cases symptoms of posttraumatic stress disorder (PTSD). Vagal nerve stimulation (VNS) is a potentially useful tool as a modulator of autonomic nervous system function, however currently available implantable devices are limited by cost and inconvenience. Objective: The purpose of this study was to assess the effects of transcutaneous cervical VNS (tcVNS) on autonomic responses to stress. Methods: Using a double-blind approach, we investigated the effects of active or sham tcVNS on peripheral cardiovascular and autonomic responses to stress using wearable sensing devices in 24 healthy human participants with a history of exposure to psychological trauma. Participants were exposed to acute stressors over a three-day period, including personalized scripts of traumatic events, public speech, and mental arithmetic tasks. Results: tcVNS relative to sham applied immediately after traumatic stress resulted in a decrease in sympathetic function and modulated parasympathetic/sympathetic autonomic tone as measured by increased pre-ejection period (PEP) of the heart (a marker of cardiac sympathetic function) of 4.2 ms (95% CI 1.6e6.8 ms, p < 0.01), decreased peripheral sympathetic function as measured by increased photoplethysmogram (PPG) amplitude (decreased vasoconstriction) by 47.9% (1.4e94.5%, p < 0.05), a 9% decrease in respiratory rate (À14.3 to À3.7%, p < 0.01). Similar effects were seen when tcVNS was applied after other stressors and in the absence of a stressor. Conclusion: Wearable sensing modalities are feasible to use in experiments in human participants, and tcVNS modulates cardiovascular and peripheral autonomic responses to stress.
This paper deals with a new tracking control method for
piezoelectric actuators. When actuating in an open-loop manner, in
order to compensate for the creep effect of the piezoelectric
transducer as well as hysteresis, a new concept of
`voltage creep' is proposed, which is represented by the two
parameters V0 and γv. It is shown that
these two parameters have the properties of wiping out and
congruency, which make it possible to derive parameter values
appropriate to control piezoelectric actuators using the
Preisach model. Finally, a tracking control experiment of
piezoelectric actuators for an arbitrary desired trajectory is
performed giving greatly improved results compared to
other open-loop actuating methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.