The possibility of 130-nm DRAM production with KrF lithography was investigated by simulation. First, the preferable exposure conditions that bring about sufficient exposure latitude (EL) for production were examined for each critical layer. Next, the effect of different mask errors of an attenuated phase shift mask (Att. PSM) on the EL was examined. In the experiments, a big difference was found on how much the errors reduced EL in the critical layers, and the EL of all patterns was found to change asymmetrically depending on the size comparison of completed mask and target design. In particular, if the contact hole size of Att. PSM is made smaller than design and exposure dosage becomes higher, EL decreases severely because ofthe sidelobe. As a result, selection ofa size that is robust against mask errors instead ofa size that exhibits the maximum exposure latitude without mask errors was found to maximize the practical EL in production. In this paper, we report on a novel methodology for 130-nm DRAM cell mask size optimization based on optical lithography simulation and dose-focus budget analyses. We also define the practical mask requirements for 130-nm DRAM production based on our simulation results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.