The purpose of this study was to characterize the antiviral activity, cytotoxicity, and mechanism of action of TMC114, a novel human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PI). TMC114 exhibited potent anti-HIV activity with a 50% effective concentration (EC 50 ) of 1 to 5 nM and a 90% effective concentration of 2.7 to 13 nM. TMC114 exhibited no cytotoxicity at concentrations up to 100 M (selectivity index, >20,000). All viruses in a panel of 19 recombinant clinical isolates carrying multiple protease mutations and demonstrating resistance to an average of five other PIs, were susceptible to TMC114, defined as a fold change in EC 50 of <4. TMC114 was also effective against the majority of 1,501 PI-resistant recombinant viruses derived from recent clinical samples, with EC 50 s of <10 nM for 75% of the samples. In sequential passage experiments using HIV-1 LAI, two mutations (R41T and K70E) were selected. One selected virus showed a 10-fold reduction in susceptibility to TMC114, but <10-fold reductions in susceptibility to the current PIs (atazanavir was not assessed), except saquinavir. However, when the selected mutations were introduced into a laboratory strain by site-directed mutagenesis, they had no effect on susceptibility to TMC114 or other PIs. There was no evidence of antagonism between TMC114 and any currently available PIs or reverse transcriptase inhibitors. Combinations with ritonavir, nelfinavir, and amprenavir showed some evidence of synergy. These results suggest that TMC114 is a potential candidate for the treatment of both naïve and PI-experienced patients with HIV.
Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are potent inhibitors of human immunodeficiency virus type 1 (HIV-1); however, currently marketed NNRTIs rapidly select resistant virus, and cross-resistance within the class is extensive. A parallel screening strategy was applied to test candidates from a series of diarylpyrimidines against wild-type and resistant HIV strains carrying clinically relevant mutations. Serum protein binding and metabolic stability were addressed early in the selection process. The emerging clinical candidate, TMC125, was highly active against wild-type HIV-1 (50% effective concentration [EC 50 ] ؍ 1.4 to 4.8 nM) and showed some activity against HIV-2 (EC 50 ؍ 3.5 M). TMC125 also inhibited a series of HIV-1 group M subtypes and circulating recombinant forms and a group O virus. Incubation of TMC125 with human liver microsomal fractions suggested good metabolic stability (15% decrease in drug concentration and 7% decrease in antiviral activity after 120 min). Although TMC125 is highly protein bound, its antiviral effect was not reduced by the presence of 45 mg of human serum albumin/ml, 1 mg of ␣ 1 -acid glycoprotein/ml, or 50% human serum. In an initial screen for activity against a panel of 25 viruses carrying single and double reverse transcriptase amino acid substitutions associated with NNRTI resistance, the EC 50 of TMC125 was <5 nM for 19 viruses, including the double mutants K101E؉K103N and K103N؉Y181C. TMC125 also retained activity (EC 50 < 100 nM) against 97% of 1,081 recent clinically derived recombinant viruses resistant to at least one of the currently marketed NNRTIs. TMC125 is a potent next generation NNRTI, with the potential for use in individuals infected with NNRTI-resistant virus.Successful long-term treatment of human immunodeficiency virus type 1 (HIV-1) by antiretrovirals is often hindered by incomplete viral suppression and the resulting emergence of drug resistance. There is now widespread resistance to all available classes of antiretrovirals, and cross-resistance within classes is extensive, often severely limiting the treatment options available (17,20). Although currently marketed nonnucleoside reverse transcriptase inhibitors (NNRTIs) are highly selective and extremely potent, they rapidly select for resistant virus. Moreover, single mutations can lead to dramatic reductions in susceptibility, often to all available inhibitors within the class (2, 11). This broad cross-resistance prevents the consecutive use of currently marketed NNRTIs in treatment regimens (1). Next-generation agents with activity against NNRTI-resistant isolates would therefore offer new treatment options.To increase the likelihood of identifying new compounds active against NNRTI-resistant strains and that have interesting drug-like properties, we developed the following strategies. The structure-activity relationship, traditionally limited to activity against the wild-type virus, was expanded to include concurrent evaluation of several NNRTI-resistant strains. To facilitate...
The screening of known HIV-1 protease inhibitors against a panel of multi-drug-resistant viruses revealed the potent activity of TMC126 on drug-resistant mutants. In comparison to amprenavir, the improved affinity of TMC126 is largely the result of one extra hydrogen bond to the backbone of the protein in the P2 pocket. Modification of the substitution pattern on the phenylsulfonamide P2' substituent of TMC126 created an interesting SAR, with the close analogue TMC114 being found to have a similar antiviral activity against the mutant and the wild-type viruses. X-ray and thermodynamic studies on both wild-type and mutant enzymes showed an extremely high enthalpy driven affinity of TMC114 for HIV-1 protease. In vitro selection of mutants resistant to TMC114 starting from wild-type virus proved to be extremely difficult; this was not the case for other close analogues. Therefore, the extra H-bond to the backbone in the P2 pocket cannot be the only explanation for the interesting antiviral profile of TMC114. Absorption studies in animals indicated that TMC114 has pharmacokinetic properties comparable to currently approved HIV-1 protease inhibitors.
The weighted genotypic scoring algorithm optimizes resistance interpretations for etravirine and guides treatment decisions regarding its use in treatment-experienced patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.