The purpose of this study was to characterize the antiviral activity, cytotoxicity, and mechanism of action of TMC114, a novel human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PI). TMC114 exhibited potent anti-HIV activity with a 50% effective concentration (EC 50 ) of 1 to 5 nM and a 90% effective concentration of 2.7 to 13 nM. TMC114 exhibited no cytotoxicity at concentrations up to 100 M (selectivity index, >20,000). All viruses in a panel of 19 recombinant clinical isolates carrying multiple protease mutations and demonstrating resistance to an average of five other PIs, were susceptible to TMC114, defined as a fold change in EC 50 of <4. TMC114 was also effective against the majority of 1,501 PI-resistant recombinant viruses derived from recent clinical samples, with EC 50 s of <10 nM for 75% of the samples. In sequential passage experiments using HIV-1 LAI, two mutations (R41T and K70E) were selected. One selected virus showed a 10-fold reduction in susceptibility to TMC114, but <10-fold reductions in susceptibility to the current PIs (atazanavir was not assessed), except saquinavir. However, when the selected mutations were introduced into a laboratory strain by site-directed mutagenesis, they had no effect on susceptibility to TMC114 or other PIs. There was no evidence of antagonism between TMC114 and any currently available PIs or reverse transcriptase inhibitors. Combinations with ritonavir, nelfinavir, and amprenavir showed some evidence of synergy. These results suggest that TMC114 is a potential candidate for the treatment of both naïve and PI-experienced patients with HIV.
The screening of known HIV-1 protease inhibitors against a panel of multi-drug-resistant viruses revealed the potent activity of TMC126 on drug-resistant mutants. In comparison to amprenavir, the improved affinity of TMC126 is largely the result of one extra hydrogen bond to the backbone of the protein in the P2 pocket. Modification of the substitution pattern on the phenylsulfonamide P2' substituent of TMC126 created an interesting SAR, with the close analogue TMC114 being found to have a similar antiviral activity against the mutant and the wild-type viruses. X-ray and thermodynamic studies on both wild-type and mutant enzymes showed an extremely high enthalpy driven affinity of TMC114 for HIV-1 protease. In vitro selection of mutants resistant to TMC114 starting from wild-type virus proved to be extremely difficult; this was not the case for other close analogues. Therefore, the extra H-bond to the backbone in the P2 pocket cannot be the only explanation for the interesting antiviral profile of TMC114. Absorption studies in animals indicated that TMC114 has pharmacokinetic properties comparable to currently approved HIV-1 protease inhibitors.
The search for hepatitis C virus polymerase inhibitors has resulted in the identification of several nonnucleoside binding pockets. The shape and nature of these binding sites differ across and even within diverse hepatitis C virus genotypes. These differences confront antiviral drug discovery with the challenge of finding compounds that are capable of inhibition in variable binding pockets. To address this, we have established a hepatitis C virus mutant and genotypic recombinant polymerase panel as a means of guiding medicinal chemistry through the elucidation of the site of action of novel inhibitors and profiling against genotypes. Using a genotype 1b backbone, we demonstrate that the recombinant P495L, M423T, M414T, and S282T mutant enzymes can be used to identify the binding site of an acyl pyrrolidine analog. We assess the inhibitory activity of this analog and other nonnucleoside inhibitors with our panel of enzyme isolates generated from clinical sera representing genotypes 1a, 1b, 2a, 2b, 3a, 4a, 5a, and 6a.Hepatitis C is estimated to affect 3% of the global population. In a number of individuals, it can lead to liver fibrosis, cirrhosis, and death. Although virus can be cleared by a combination of pegylated interferon and ribavirin, the treatment is successful in only around 50% of treated patients and has considerable liabilities. These weaknesses highlight the need for new drugs to treat hepatitis C virus (HCV) in patients who have failed current therapy, as well as in untreated patients (12,56).HCV is an enveloped virus with an RNA genome of ϳ9.6 kb. Its single-stranded RNA has a positive polarity and encodes a polyprotein of ϳ3,300 amino acids comprising 4 structural proteins (Core, E1, E2, and p7) and 6 nonstructural proteins (NS2, -3, -4A, -4B, -5A, and -5B) (43). These proteins, as well as the viral translation process using the internal ribosomal entry site and a range of host factors, are candidate targets for therapeutic intervention (3, 46). The remarkable clinical success of human immunodeficiency virus reverse transcriptase and protease inhibitors, as well as the availability of several crystal structures, has motivated HCV drug discovery efforts to focus mainly on the development of protease and polymerase inhibitors. HCV NS5B is an RNA-dependent RNA polymerase that is responsible for the replication of the viral genome, which is thought to occur through a primer-independent de novo mechanism (6, 31). Due to the lack of proofreading capacity, this replication process is subject to a high error rate (36). As a result, the virus has evolved into multiple variant strains, classified into six different genotypes (1 to 6) and several subtypes (a, b, c, etc.) (45). To add to this complexity, HCV-infected individuals also harbor different variants or quasispecies of the virus, together representing a pool of genomes on which selective pressure can act (16). It has been speculated that drug resistance will rapidly emerge upon administration of specific HCV antivirals and that together with viral ...
On the basis of structural data gathered during our ongoing HIV-1 protease inhibitors program, from which our clinical candidate TMC114 9 was selected, we have discovered new series of fused heteroaromatic sulfonamides. The further extension into the P2' region was aimed at identifying new classes of compounds with an improved broad spectrum activity and acceptable pharmacokinetic properties. Several of these compounds display an exceptional broad spectrum activity against a panel of highly cross-resistant mutants. Certain members of these series exhibit favorable pharmacokinetic profiles in rat and dog. Crystal structures and molecular modeling were used to rationalize the broad spectrum profile resulting from the extension into the P2' pocket of the HIV-1 protease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.