The purpose of this study was to characterize the antiviral activity, cytotoxicity, and mechanism of action of TMC114, a novel human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PI). TMC114 exhibited potent anti-HIV activity with a 50% effective concentration (EC 50 ) of 1 to 5 nM and a 90% effective concentration of 2.7 to 13 nM. TMC114 exhibited no cytotoxicity at concentrations up to 100 M (selectivity index, >20,000). All viruses in a panel of 19 recombinant clinical isolates carrying multiple protease mutations and demonstrating resistance to an average of five other PIs, were susceptible to TMC114, defined as a fold change in EC 50 of <4. TMC114 was also effective against the majority of 1,501 PI-resistant recombinant viruses derived from recent clinical samples, with EC 50 s of <10 nM for 75% of the samples. In sequential passage experiments using HIV-1 LAI, two mutations (R41T and K70E) were selected. One selected virus showed a 10-fold reduction in susceptibility to TMC114, but <10-fold reductions in susceptibility to the current PIs (atazanavir was not assessed), except saquinavir. However, when the selected mutations were introduced into a laboratory strain by site-directed mutagenesis, they had no effect on susceptibility to TMC114 or other PIs. There was no evidence of antagonism between TMC114 and any currently available PIs or reverse transcriptase inhibitors. Combinations with ritonavir, nelfinavir, and amprenavir showed some evidence of synergy. These results suggest that TMC114 is a potential candidate for the treatment of both naïve and PI-experienced patients with HIV.
The screening of known HIV-1 protease inhibitors against a panel of multi-drug-resistant viruses revealed the potent activity of TMC126 on drug-resistant mutants. In comparison to amprenavir, the improved affinity of TMC126 is largely the result of one extra hydrogen bond to the backbone of the protein in the P2 pocket. Modification of the substitution pattern on the phenylsulfonamide P2' substituent of TMC126 created an interesting SAR, with the close analogue TMC114 being found to have a similar antiviral activity against the mutant and the wild-type viruses. X-ray and thermodynamic studies on both wild-type and mutant enzymes showed an extremely high enthalpy driven affinity of TMC114 for HIV-1 protease. In vitro selection of mutants resistant to TMC114 starting from wild-type virus proved to be extremely difficult; this was not the case for other close analogues. Therefore, the extra H-bond to the backbone in the P2 pocket cannot be the only explanation for the interesting antiviral profile of TMC114. Absorption studies in animals indicated that TMC114 has pharmacokinetic properties comparable to currently approved HIV-1 protease inhibitors.
DRV/r 800/100 mg qd was non-inferior to LPV/r 800/200 mg at 48 weeks, with a more favorable safety profile. Significantly higher response rates were observed with DRV/r in patients with HIV-1 RNA at least 100 000 copies/ml. DRV/r 800/100 mg offers a new effective and well tolerated once-daily, first-line treatment option for treatment-naive patients.
The prevalence of naturally occurring hepatitis C virus (HCV) variants that are less sensitive to direct-acting antiviral (DAA) inhibitors has not been fully characterized. We used population sequence analysis to assess the frequency of such variants in plasma samples from 3,447 DAA-naive patients with genotype 1 HCV. In general, HCV variants with lower-level resistance (3-to 25-fold increased 50% inhibitor concentration [IC 50 ]) to telaprevir were observed as the dominant species in 0 to 3% of patients, depending on the specific variant, whereas higher-level resistant variants (>25-fold-increased IC 50 ) were not observed. Specific variants resistant to NS5A inhibitors were predominant in up to 6% of patients. Most variants resistant to nucleo(s/t)ide activesite NS5B polymerase inhibitors were not observed, whereas variants resistant to non-nucleoside allosteric inhibitors were observed in up to 18% of patients. The presence of DAA-resistant variants in NS5A, NS5B, or NS3 (including telaprevir-resistant variants), in baseline samples of treatment-naive patients receiving a telaprevir-based regimen in phase 3 studies did not affect the sustained viral response (SVR). Treatment-naive patients with viral populations containing the telaprevir-resistant variants NS3 V36M, T54S, or R155K at baseline achieved a 74% SVR rate, whereas patients with no resistant variants detected prior to treatment achieved a 76% SVR rate. The effect of specific resistant variant frequency on response to various DAA treatments in different patient populations, including interferon nonresponders, should be further studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.