Clear cell adenocarcinoma of the ovary (OCC) is a chemo-resistant tumor with a relatively poor prognosis and is frequently associated with endometriosis. Although it is assumed that oxidative stress plays some role in the malignant transformation of this tumor, the characteristic molecular events leading to carcinogenesis remain unknown. In this study, an array-based comparative genomic hybridization (CGH) analysis revealed Met gene amplification in 4/13 OCC primary tumors and 2/8 OCC cell lines. Amplification of the AKT2 gene, which is a downstream component of the Met/PI3K signaling pathway, was also observed in 5/21 samples by array-based CGH analysis. In one patient, both the Met and AKT2 genes were amplified. These findings were confirmed using fluorescence in situ hybridization, real-time quantitative PCR, immunoblotting, and immunohistochemistry. In total, 73 OCC cases were evaluated using real-time quantitative PCR; 37.0% demonstrated Met gene amplification (>4 copies), and 8.2% had AKT2 amplification. Furthermore, stage 1 and 2 patients with Met gene amplification had significantly worse survival than patients without Met gene amplification (p<0.05). Met knockdown by shRNA resulted in reduced viability of OCC cells with Met amplification due to increased apoptosis and cellular senescence, suggesting that the Met signaling pathway plays an important role in OCC carcinogenesis. Thus, we believe that targeted inhibition of the Met pathway may be a promising treatment for OCC.
The ovary is a complex endocrine organ responsible for steroidogenesis and folliculogenesis. Follicles consist of oocytes and two primary steroidogenic cell types, the granulosa cells, and the theca cells. Immortalized human granulosa cells are essential for researching the mechanism of steroidogenesis and folliculogenesis. We obtained granulosa cells from a 35-yr-old female and immortalized them by lentivirus-mediated transfer of several genes so as to establish a human nonluteinized granulosa cell line (HGrC1). We subsequently characterized HGrC1 and investigated its steroidogenic performance. HGrC1 expressed enzymes related to steroidogenesis, such as steroidogenic acute regulatory protein, CYP11A, aromatase, and gonadotropin receptors. Stimulation with FSH increased the mRNA levels of aromatase, which consequently induced the aromatization of androstenedione to estradiol. Activin A increased the mRNA levels of the FSH receptor, which were synergistically up-regulated with FSH stimulation. HGrC1 also expressed a series of ligands and receptors belonging to the TGF-β superfamily. A Western blot analysis showed that bone morphogenetic protein (BMP)-4, BMP-6, and BMP-7 phosphorylated small mother against decapentaplegic (Smad)1/5/8, whereas growth differentiation factor-9 phosphorylated Smad2/3. BMP-15 and anti-Müllerian hormone phosphorylated Smad1/5/8 while also weakly phosphorylating Smad2/3. These results indicate that HGrC1 may possess the characteristics of granulosa cells belonging to follicles in the early stage. HGrC1 might also be capable of displaying the growth transition from a gonadotropin-independent status to gonadotropin-dependent one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.