The water absorption properties of a PE-CVD (plasma-enhanced chemical vapor deposition) fluorine-doped SiO2 film with a low dielectric constant were studied. It was concluded that highly stable F-doped SiO2 film was obtained at F contents from 2.0% to 4.2% (3.2≤k≤3.6) using high-density plasma CVD. However, at F contents higher than 4.2% (k<3.2), the amount of water absorption was markedly increased due to the presence of Si–F bonds, such as Si(–F)2 bonds, which are highly reactive with water. On the other hand, water absorption was observed at every F content for conventional plasma CVD films. Through gas phase component analysis and investigation of the incident ion energy distribution using a quadrupole mass spectrometer, it was confirmed that a high efficiency of gas dissociation and high-energy ion bombardment are the keys to obtaining high-quality films with a high resistance to water absorption.
In this paper, we describe the effect of electron-beam (EB) curing on ultra-low-k dielectric porous SiOC material (k ¼ 2:2) and the application of this technology to the 90-nm-node Cu/low-k multilevel damascene process. A significant improvement of dielectric porous SiOC films with EB curing has been demonstrated. The mechanical and adhesion strength of these films were increased by a factor of 1.5-1.6 without degrading the film's k. This result can be explained by the reconstruction of a Si-O random network structure from cage Si-O bonds and Si-CH 3 bonds through EB curing. Additionally, the EB curing of spin-on dielectric (SOD) porous low-k films contributes to a decrease in their curing temperature and a decrease in their curing time. Under optimum EB curing conditions, no degradation of transistor performance was revealed. The excellent adhesion strength obtained by EB curing, has contributed to the success of multilevel damascene integration. On the basis of our findings, this EB curing technology can be applied in devices of 65-nm-node and higher.
The effect of plasma treatment and a dielectric diffusion barrier on electromigration (EM) performance was examined. The characteristics and adhesion properties at the interface between copper (Cu) and the dielectric diffusion barrier were also investigated by scanning transmission electron microscopy–electron energy loss spectrometry (STEM–EELS). The existence of oxygen at the interface after hydrogen (H2) plasma treatment, which has a large pre-exponential factor, causes a large EM drift velocity. Ammonium (NH3) plasma treatment can reduce the Cu oxide completely, resulting in an improvement in EM performance. On the other hand, the dielectric diffusion barrier of SiCxNy, which has a better adhesion property then SiCx, reduces EM drift velocity and provides a larger activation energy. The reduction of CuOx completely by plasma treatment is essential and the selection of dielectric diffusion barrier is important to improve the EM performance of Cu damascene interconnects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.