It has been reported that the anterior cingulate cortex (ACC) has a variety of functions relating to pain as well as pain perception. However, the underlying mechanisms for those functions remain unclear. To elucidate the functional role of the ACC in pain perception and pain-related functions such as attention to pain and escape from pain, single neuronal activity was recorded from the ACC, and the behavioral correlates of this neuronal activity was studied. A total of 667 neurons were recorded from the ACC in awake behaving monkeys. Twenty-one had modulated activity during a heat-detection task. Eighteen of these increased their firing frequency following an increase in stimulus temperature, whereas three of them had decreased firing during heating of the face. Seventy-five percent of heat-evoked responses of heat-responsive ACC neurons were significantly depressed when monkeys detected the change in magnitude of illumination of a light presented on the front panel. The neuronal activity was significantly higher when monkeys escaped from a noxious heat stimulus than when the monkeys detected a small change in temperature (T2) above a larger initial shift (T1). No relationship between firing frequency and detection latency of the T2 stimulation was observed. These findings suggest that ACC nociceptive neurons are involved in attention to pain and escape from pain but not in the sensory discriminative aspect of pain.
To elucidate the effect of chronic inflammation on spinal nociceptive neurons in the elderly, we compared nocifensive behavior, peripheral inflammatory responses, and spinal dorsal horn neuronal activities between the aged (29-34 mo) and adult (7-12 mo) male rats after injection of complete Freund's adjuvant (CFA) into the hind paw. Aged rats exhibited a significantly lower mechanical paw withdrawal threshold before inflammation. However, after CFA injection mechanical allodynia developed in both adult and aged rats after CFA injection. The changes of foot temperature and thickness after CFA injection were greater and lasted longer in aged than in adult rats. Sets of 124 wide dynamic range (WDR) neurons (aged: 59, adult: 65) and 26 nociceptive specific (NS) neurons (aged: 13, adult: 13) were recorded from the lumber spinal dorsal horn. NS neurons from the inflamed adult rats showed significantly higher responses to noxious mechanical stimulation than those in aged rats, whereas WDR neurons from inflamed adult and aged rats were similar. Background activity of WDR neurons from the adult rats increased after CFA, whereas WDR neurons of aged rats and NS neurons from either group were not. The afterdischarge followed by noxious mechanical stimulation was significantly greater for WDR neurons in both adult and aged rats, whereas no significant differences were observed in NS neurons. Two days after CFA injection, Fos expression increased similarly in aged and adult rats. Thus the aged rats showed enhanced peripheral inflammatory responses to CFA injection with only a slight change in dorsal horn neuronal activity. Together with our previous finding that nociceptive neurons in aged rats exhibit hyperexcitability, these results suggest that the dorsal horn nociceptive system becomes sensitized with advancing age and its excitability cannot be further increased by inflammation.
The phosphorylation of extracellular signal-regulated kinase (pERK) in DRG and dorsal horn neurons is induced by the C-fiber electrical stimulation to the peripheral nerve. The present study was designed to investigate the expression and modulation of pERK in the rat dorsal horn neurons produced by repetitive electrical stimulation, and its involvement in the electrophysiological activity of dorsal horn neurons. Electrical stimulation of C-fiber intensity at different frequencies was applied to the sciatic nerve; the stimuli-induced pERK expression and the activity in dorsal horn neurons were studied by immunohistochemistry and extracellular recording, respectively. Electrical stimulation of C-fibers (3 mA) induced pERK expression in dorsal horn neurons in a frequency-dependent manner, indicating that the frequency of electrical stimulation is an important factor which activates the intracellular signal pathway in the spinal cord. To demonstrate the underlying mechanism of this frequency-dependent pERK expression, an NMDA receptor antagonist, MK-801, and a voltage sensitive calcium channel antagonist, nifedipine, were administrated intrathecally before the stimulation. We found that high frequency (0.5 Hz and 10 Hz) but not low frequent (0.05 Hz) stimulus-evoked pERK was partially inhibited by MK-801. Both high and low frequency stimulus-evoked pERK were inhibited by the nifedipine treatment. The extracellular single unit activities were recorded from the laminae I-II and V of the L4-5 dorsal horn, and we found that blockage of the intracellular ERK signal suppressed the wind-up responses in a dose-dependent manner. In contrast, any change in the mechanically evoked responses was not observed following the administration of ERK inhibitor. These observations indicate that ERK activation plays an important role in the induction of the wind-up responses in dorsal horn nociceptive neurons.
This case demonstrates that SGB may relieve pain related to temporal arteritis and sympathetically maintained headache and orofacial pain by reducing noxious stimulation peripherally and decreasing central pain transmission centrally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.