Organotin compounds (OTs) and representative booster biocides were measured in sediment and mussels from Otsuchi Bay, Japan. The mean amounts of tributyltin (TBT) and triphenyltin (TPT) compounds in sediment were 13 microg kg(-1) dry and 3 microg kg(-1) dry, respectively. Representative booster biocides (Sea-Nine 211, Diuron, Dichlofluanid, Irgarol 1501, M1, which is a degradation compound of Irgarol 1051, and Copper pyrithione) were also detected in sediment from Otsuchi Bay. OT concentrations were higher than those of the measured booster biocides. Otsuchi Bay was divided into four parts by cluster analysis based on OT concentrations in sediment sampled from the bay. These areas included the vicinity of a shipyard, a small fishing port, the closed inner area of the bay, and the mouth of the bay. Higher concentrations of TBT and TPT and a higher ratio of TBT to total BTs were observed in the vicinity of the shipyard. A higher concentration of TPT in comparison with TBT was detected in a small fishing port. Furthermore, OT concentrations in the mouth of the bay were higher than those in the closed-off section. OT concentrations in mussels decreased with distance from the shipyard. Otsuchi Bay was then divided into three parts by cluster analysis based on the concentrations of representative booster biocides found in the bay's sediment. These areas included the vicinity of a shipyard, a small fishing port, and other sites. Concentrations of Diuron and Irgarol 1051 in the vicinity of a shipyard and a small fishing port were dramatically high in comparison with the other sites. Copper pyrithione and Dichlofluanid in addition to Diuron and Irgarol 1051 were also detected in the area of a small fishing port. The concentrations of antifouling biocides were highest in the water in front of the shipyard and showed a marked decrease with distance from the shipyard.
We evaluated the median lethal concentrations (LC50s) of the pyrithione (PT) antifoulants copper pyrithione (CuPT) and zinc pyrithione (ZnPT) to a teleost, red sea bream (Pagrus major), and a crustacean, toy shrimp (Heptacarpusfutilirostris). The 96-h LC50 values of CuPT and ZnPT, on the basis of actual concentrations, were 9.3 and 98.2 R.g/L, respectively, for red sea bream and 2.5 and 120 microg/L, respectively, for toy shrimp. Histological observations revealed that the secondary lamellae of the gill filaments of the experimental fish were heavily damaged after exposure to the PTs, suggesting that fatal hypoxemia was one cause of death. Because CuPT and ZnPT are usually used in combination with Cu, we also estimated the joint toxicities of the PTs with Cu using the LC50 values of the PTs and those of Cu (84.4 and 113 microg/L for red sea bream and toy shrimp, respectively). The results suggested that the joint toxicity of the ZnPT and Cu mixture is more than the additive toxicities of CuPT and Cu, especially in toy shrimp. The enhancement of toxicity in the mixture was inferred to be caused by conversion of ZnPT to the more toxic CuPT in the presence of Cu.
Concentrations of organotins (OTs) were measured in the muscle of 11 species of fishes from the Port of Osaka and Yodo River, Japan. Tributytin (TBT) and triphenyltin (TPT) compounds were detected in the range of 0.011-0.182 mg/kg wet weight and < 0.001-0.130 mg/kg wet weight, respectively. Concentrations of TBT were higher than those of TPT in the muscle of fish. Concentrations of OTs in fish from sea areas were higher than those from rivers, and the ratios of TBT to total butyltins (BTs) in fish from sea areas were also higher than those from rivers. A similar trend was found for TPT. Logarithm of bioconcentration factor (BCF) of TBT in fish was in the range of 2.7-3.9. No sex differences in TBT and TPT concentrations in Japanese sea perch were observed, and the concentrations of TBT and TPT were not related to total length of fish. No correlation was also observed between the concentration of TBT or TPT and lipid content. The concentrations of BTs and phenyltins (PTs) in organs and tissues of three fish species were determined. TBT was higher concentration in liver, brain, and muscle of white croaker and yellowtail. The ratios of TBT to the total BTs were 30-40%, and the ratios of TPT to total PTs in these fishes were greater than 50% of the total PT concentrations.
Concentrations of booster antifouling compounds in the port of Osaka, Japan were assessed. Concentrations of Sea-Nine 211 (4,5-dichloro-2-n-octyl-3-isothiazolone), thiabendazole (2-(4-thiazolyl)-benzimidazole), IPBC (3-iodo-2-propynyl butylcarbamate), Diuron (3,4-dichlorophenyl-N, N-dimethylurea), Irgarol 1051 (2-methylthio-4-t-butylamino-6-cyclopropylamino-s-triazine), and M1 (2-methylthio-4-t-butylamino-6-amino-s-triazine) in port water samples were in the range of <0.003-0.004 microg L(-1), <0.0008-0.020 microg L(-1), <0.0007-1.54 microg L(-1), <0.0008-0.267 microg L(-1), and <0.0019-0.167 microg L(-1), respectively. IPBC was not detected in the water samples, but the concentration of Diuron was higher than any previously reported. The concentrations of Sea-Nine 211, thiabendazole, Diuron, Irgarol 1051, and M1 in sediment samples were in the range of <0.04-2.4 microg kg(-1) dry, <0.08-1.2 microg kg(-1) dry, <0.64-1350 microg kg(-1) dry, <0.08-8.2 microg kg(-1) dry, and <0.18-2.9 microg kg(-1) dry, respectively. IPBC was again not detected. The levels of Sea-Nine 211, Diuron, and Irgarol 1051 in water and sediment samples were high in a poorly flushed mooring area for small and medium-hull vessels. Levels of Diuron and Irgarol 1051 were highest in summer. The concentration of Sea-Nine 211 in water increased between August and October 2002. Except for M1, increases in the levels of booster biocides in sediment were observed during the study period. The sediment-water partition (Kd) was calculated by dividing the concentrations in sediment by the concentrations in water. The Kd values for Sea-Nine 211, thiabendazole, Diuron, Irgarol 1051, and M1 were 690, 180, 2700, 300, and 870. The Kd value for these alternative compounds was lower than for TBT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.