Purpose. We assessed the fast-acting bactericidal activity and substantivity of olanexidine gluconate (OLG) to investigate its remaining bactericidal activity on the skin after rinsing and drying by using an ex vivo Yucatan micropig (YMP) skin model. Methodology. The fast-acting bactericidal activity was evaluated in pigskin models inoculated with methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis, vancomycin-resistant Enterococcus faecalis (VRE), Acinetobacter baumannii, Corynebacterium minutissimum and Cutibacterium acnes. To evaluate substantivity, the YMP skin piece first had 1.5 % OLG, chlorhexidine gluconate (CHG) formulations or 10 % povidone–iodine (PVP-I) applied to it, and was then rinsed with distilled water, incubated for 4, 6, 8 or 12 h and inoculated with the test bacteria (MRSA, S. epidermidis and VRE). The viable bacteria remaining at 1 min of exposure of bacteria were counted to measure the quantity of antiseptic molecules retaining bactericidal activity. To determine the factors contributing to the substantivity, the stratum corneum (SC) of the YMP skin that had had OLG or CHG applied to it was exfoliated using a tape-stripping method and the amount of antiseptic was quantitated. Results. OLG showed a fast-acting bactericidal activity that was similar to or stronger than that of CHG formulations up to a concentration of 1 % and PVP-I with a short exposure time of 30 s, and substantivity until 12 h after rinsing, whereas the other antiseptics hardly showed any substantivity. There was 2.8 times or more OLG in the SC than CHG. Conclusion. OLG has fast-acting activity and substantivity, which are required properties for an antiseptic, and is useful for preventing infections.
Recently, 1.5% olanexidine gluconate, a biguanide compounds, was launched as a new antiseptic agent in Japan. However, the comprehensive bactericidal spectrum of olanexidine gluconate is still unknown. In this study, we evaluated in vitro bactericidal activity of olanexidine gluconate using time-kill assay against various bacteria, mycobacteria, and fungi. With the exception of Burkholderia cepacia and Mycobacterium spp., 1.5% olanexidine gluconate exhibited fast-acting (≤60 s) bactericidal activity against all tested Gram-positive and Gram-negative bacteria, including vancomycin-resistant Enterococcus faecalis, methicillin-resistant Staphylococcus aureus, methicillin-resistant Staphylococcus epidermidis, extended spectrum β-lactamase producing Klebsiella pneumoniae, and multidrug-resistant Pseudomonas aeruginosa. Furthermore, 1.5% olanexidine gluconate eradicated Candida albicans, Microsporum canis, and Malassezia furfur within 3 min. Our findings indicate that olanexidine gluconate has broad spectrum bactericidal activity; therefore, it may be useful for the prevention of a wide range of infectious diseases.
Olanexidine gluconate-containing preoperative antiseptic (OLG-C) is colorless, which makes it difficult to determine its area of application. To overcome this drawback, we realized a stable orange-tinted antiseptic (OLG-T) by adding new additives to OLG-C and investigated its pharmaceutical properties compared with OLG-C and povidone iodine (PVP-I). We evaluated the influence of the additives on the antimicrobial activity and adhesiveness of medical adhesives to OLG-T-applied skin by in vitro time-kill/ex vivo micropig skin assays and a peel test using excised micropig skin, respectively. In the in vitro time-kill assay, the bactericidal/fungicidal activity of OLG-T and OLG-C were equivalent. In the ex vivo micropig skin assay, their fast-acting and persistent bactericidal activities against vancomycin-resistant Enterococcus faecalis were higher than that of PVP-I. In the peel test, the adhesion force of the incise drape and the amount of stripped corneocytes on the peeled drape were comparable between OLG-T-and OLG-C-applied skin, but both were less than those of PVP-I-applied skin.The drapes for OLG-T-and OLG-C-applied skin had moderate adhesion force, and the drape-related injuries were expected to be weak. These results suggest that OLG-T performs no worse than OLG-C in terms of its antimicrobial activity and medical adhesive compatibility.Therefore, we expect OLG-T to lead to more convenient preoperative skin preparation and further contribute to lowering SSI rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.