Recently, 1.5% olanexidine gluconate, a biguanide compounds, was launched as a new antiseptic agent in Japan. However, the comprehensive bactericidal spectrum of olanexidine gluconate is still unknown. In this study, we evaluated in vitro bactericidal activity of olanexidine gluconate using time-kill assay against various bacteria, mycobacteria, and fungi. With the exception of Burkholderia cepacia and Mycobacterium spp., 1.5% olanexidine gluconate exhibited fast-acting (≤60 s) bactericidal activity against all tested Gram-positive and Gram-negative bacteria, including vancomycin-resistant Enterococcus faecalis, methicillin-resistant Staphylococcus aureus, methicillin-resistant Staphylococcus epidermidis, extended spectrum β-lactamase producing Klebsiella pneumoniae, and multidrug-resistant Pseudomonas aeruginosa. Furthermore, 1.5% olanexidine gluconate eradicated Candida albicans, Microsporum canis, and Malassezia furfur within 3 min. Our findings indicate that olanexidine gluconate has broad spectrum bactericidal activity; therefore, it may be useful for the prevention of a wide range of infectious diseases.
The aim of this study was to clarify the clarithromycin resistance mechanisms of -lactamase-nonproducing ampicillin-resistant Haemophilus influenzae strains. In all clarithromycin-resistant strains, the transcript level of acrB was significantly elevated, and these strains had a frameshift mutation in acrR. Introduction of the acrR mutation into H. influenzae Rd generated a clarithromycin-resistant transformant with the same MIC as the donor strain. Our results indicate that the acrR mutation confers clarithromycin resistance by the increasing the transcription of acrB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.