Cicer reticulatum L. is the wild progenitor of the fourth most important legume crop chickpea (C. arietinum L.). We assembled short-read sequences into 416 Mb draft genome of C. reticulatum and anchored 78% (327 Mb) of this assembly to eight linkage groups. Genome annotation predicted 25,680 protein-coding genes covering more than 90% of predicted gene space. The genome assembly shared a substantial synteny and conservation of gene orders with the genome of the model legume Medicago truncatula. Resistance gene homologs of wild and domesticated chickpeas showed high sequence homology and conserved synteny. Comparison of gene sequences and nucleotide diversity using 66 wild and domesticated chickpea accessions suggested that the desi type chickpea was genetically closer to the wild species than the kabuli type. Comparative analyses predicted gene flow between the wild and the cultivated species during domestication. Molecular diversity and population genetic structure determination using 15,096 genome-wide single nucleotide polymorphisms revealed an admixed domestication pattern among cultivated (desi and kabuli) and wild chickpea accessions belonging to three population groups reflecting significant influence of parentage or geographical origin for their cultivar-specific population classification. The assembly and the polymorphic sequence resources presented here would facilitate the study of chickpea domestication and targeted use of wild Cicer germplasms for agronomic trait improvement in chickpea.
Activity of root apical meristem (RAM) at the root apex is critical for stress-mediated modulation of root-architecture. Chickpea, like other legumes, possesses a basic open root meristem. Deep sequencing was used to perform microRNA expression profiling in root apex of chickpea (Cicer arietinum L.) in order to investigate post-transcriptional regulation of gene expression in this tissue in response to salinity and water deficit. Five small RNA libraries prepared from chickpea root apices at different stages of stress treatments were sequenced to obtain 284 unique miRNA sequences including 60 novel miRNAs belonging to total 255 families. Two hundred and fiftynine miRNAs were differentially expressed in stress. Six hundred and nine mRNA targets involved in diverse cellular processes were predicted for 244 miRNAs. Stress-responsive expression patterns of selected miRNAs, inverse expression patterns of their target genes and the target-cleavage sites were validated. Three candidate miRNA-target gene relationships were validated in transient expression system in chickpea. The miRNA expression profiling under salinity and water deficiency in a legume root apex and the reported function of their target genes suggested important roles of miRNA-mediated post-transcriptional regulation of gene expression involved in re-patterning of root hair cells, lateral root formation and high-affinity K+-uptake under these stresses.
Cytokinin group of phytohormones regulate root elongation and branching during postembryonic development. Cytokinin-degrading enzymes cytokinin oxidases/dehydrogenases (CKXs) have been deployed to investigate biological activities of cytokinin and to engineer root growth. We expressed chickpea cytokinin oxidase 6 (CaCKX6) under the control of a chickpea root-specific promoter of CaWRKY31 in Arabidopsis thaliana and chickpea having determinate and indeterminate growth patterns, respectively, to study the effect of cytokinin depletion on root growth and drought tolerance. Root-specific expression of CaCKX6 led to a significant increase in lateral root number and root biomass in Arabidopsis and chickpea without any penalty to vegetative and reproductive growth of shoot. Transgenic chickpea lines showed increased CKX activity in root. Soil-grown advanced chickpea transgenic lines exhibited higher root-to-shoot biomass ratio and enhanced long-term drought tolerance. These chickpea lines were not compromised in root nodulation and nitrogen fixation. The seed yield in some lines was up to 25% higher with no penalty in protein content. Transgenic chickpea seeds possessed higher levels of zinc, iron, potassium and copper. Our results demonstrated the potential of cytokinin level manipulation in increasing lateral root number and root biomass for agronomic trait improvement in an edible legume crop with indeterminate growth habit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.