This paper presents 3D printing of piezoelectric sensors using BaTiO3 (BTO) filler in a poly(vinylidene) fluoride (PVDF) matrix through electric in situ poling during the 3D printing process. Several conventional methods require complicated and time‐consuming procedures. Recently developed electric poling‐assisted additive manufacturing (EPAM) process paves the way for printing of piezoelectric filaments by incorporating polarizing processes that include mechanical stretching, heat press, and electric field poling simultaneously. However, this process is limited to fabrication of a single PVDF layer and quantitative material characterizations such as piezoelectric coefficient and β‐phase percentage are not investigated. In this paper, an enhanced EPAM process is proposed that applies a higher electric field during 3D printing. To further increase piezoelectric response, BTO ceramic filler is used in the PVDF matrix. It is found that a 55.91% PVDF β‐phase content is nucleated at 15 wt% of BTO. The output current and β‐phase content gradually increase as the BTO weight percentage increases. Scanning electron microscopy analysis demonstrates that larger agglomerates are formulated as the increase of BTO filler contents and results in increase of toughness and decrease of tensile strength. The highest fatigue strength is observed at 3 wt% BTO and the fatigue strength gradually decreases as the BTO filler contents increases.
This paper presents a novel process to fabricate piezoelectric films from polyvinylidene fluoride (PVDF) polymer using integrated fused deposition modeling (FDM) 3D printing and corona poling technique. Corona poling is one of many effective poling processes that has received attention to activate PVDF as a piezoelectric responsive material. The corona poling process occurs when a PVDF polymer is exposed to a high electric field created and controlled through an electrically charged needle and a grid electrode under heating environment. FDM 3D printing has seen extensive progress in fabricating thermoplastic materials and structures, including PVDF. However, post processing techniques such as poling is needed to align the dipoles in order to gain piezoelectric properties. To further simplify the piezoelectric sensors and structures fabrication process, this paper proposes an integrated 3D printing process with corona poling to fabricate piezoelectric PVDF sensors without post poling process. This proposed process, named ‘Integrated 3D Printing and Corona poling process’ (IPC), uses the 3D printer’s nozzle and heating bed as anode and cathode, respectively, to create poling electric fields in a controlled heating environment. The nozzle travels along the programmed path with fixed distance between nozzle tip and sample’s top surface. Simultaneously, the electric field between the nozzle and bottom heating pad promotes the alignment of dipole moment of PVDF molecular chains. The crystalline phase transformation and output current generated by printed samples under different electric fields in this process were characterized by a Fourier transform infrared spectroscopy and through fatigue load frame. It is demonstrated that piezoelectric PVDF films with enhanced β-phase percentage can be fabricated using the IPC process. In addition, mechanical properties of printed PVDF was investigated by tensile testing. It is expected to expand the use of additive manufacturing to fabricate piezoelectric PVDF-based devices for applications such as sensing and energy harvesting.
A new class of electronic materials derived predominantly from natural foods and foodstuffs, with minimal levels of inorganic materials, is developed and studied to build edible electronic components and devices compatible with the gastrointestinal (GI) tract. A “toolkit” of food‐based electronic materials, fabrication schemes, basic device components, and functional devices with integrated sensing and wireless signal transmission is reported. These new materials establish the possibility to extend GI electronic devices beyond the ingested nondegradable systems to edible and nutritive systems, in which the described materials may be ingested and assimilated as metabolized nutrients. This study represents a new era of edible electronics with the potential to revolutionize modern biomedical technologies and devices.
This paper presents a fabrication process to enhance homogeneous dispersion of BaTiO 3 nanoparticles in polyvinylidene fluoride matrix nanocomposites using fused deposition modeling (FDM) 3D printing technique. The nanocomposites integrate the functional property (piezoelectric, pyroelectric, and dielectric) of BaTiO 3 with the flexibility and lightweight of polyvinylidene fluoride. Traditionally, the simple yet effective way to fabricate the nanocomposites includes solventcasting, spin-coating, and hot-embossing. However, these methods have disadvantages such as heterogeneous dispersion of BaTiO 3 nanoparticles in polyvinylidene fluoride matrix due to the higher density of BaTiO 3 compared with polyvinylidene fluoride and agglomeration during fabrication process. This heterogeneous dispersion could weaken functional and mechanical properties. Herein, fused deposition modeling 3D printing technique was utilized for homogeneous dispersion to alleviate the agglomeration of BaTiO 3 in polyvinylidene fluoride through two processes: filament extrusion and 3D printing. In addition, thermal poling was applied to further enhance piezoelectric response of the BaTiO 3 / polyvinylidene fluoride nanocomposites. It is found that 3D printed BaTiO 3 /polyvinylidene fluoride nanocomposites exhibit three times higher piezoelectric response than solvent-casted nanocomposites.
Purpose -The usage of additive manufacturing (AM) technology in industries has reached up to 50 per cent as prototype or end-product. However, for AM products to be directly used as final products, AM product should be produced through advanced quality control process, which has a capability to be able to prove and reach their desire repeatability, reproducibility, reliability and preciseness. Therefore, there is a need to review quality-related research in terms of AM technology and guide AM industry in the future direction of AM development. Design/methodology/approach -This paper overviews research progress regarding the QC in AM technology. The focus of the study is on manufacturing quality issues and needs that are to be developed and optimized, and further suggests ideas and directions toward the quality improvement for future AM technology. This paper is organized as follows. Section 2 starts by conducting a comprehensive review of the literature studies on progress of quality control, issues and challenges regarding quality improvement in seven different AM techniques. Next, Section 3 provides classification of the research findings, and lastly, Section 4 discusses the challenges and future trends. Findings -This paper presents a review on quality control in seven different techniques in AM technology and provides detailed discussions in each quality process stage. Most of the AM techniques have a trend using in-situ sensors and cameras to acquire process data for real-time monitoring and quality analysis. Procedures such as extrusion-based processes (EBP) have further advanced in data analytics and predictive algorithms-based research regarding mechanical properties and optimal printing parameters. Moreover, compared to others, the material jetting progresses technique has advanced in a system integrated with closed-feedback loop, machine vision and image processing to minimize quality issues during printing process.Research limitations/implications -This paper is limited to reviewing of only seven techniques of AM technology, which includes photopolymer vat processes, material jetting processes, binder jetting processes, extrusion-based processes, powder bed fusion processes, directed energy deposition processes and sheet lamination processes. This paper would impact on the improvement of quality control in AM industries such as industrial, automotive, medical, aerospace and military production. Originality/value -Additive manufacturing technology, in terms of quality control has yet to be reviewed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.