Receptor-mediated regulation of acetylcholine release in the airways, particularly in humans, remains unclear. In the present study, the tissue content of acetylcholine and release of [3H]acetylcholine were measured in freshly dissected human bronchi obtained at thoracotomy. Large (main and lobar bronchi) and small (segmental and subsegmental bronchi) airways contained considerable amounts of endogenous acetylcholine (300 +/- 50 pmol/100 mg wet weight), whereas significantly less was found in lung parenchyma (60 +/- 30 pmol/100 mg). Isolated small bronchi incubated in an organ bath with the precursor [3H]choline synthesized significant amounts of [3H]acetylcholine (26,000 +/- 4,000 dpm/100 mg). Subsequent transmural stimulation (four 20 s trains at 15 Hz) of radiolabeled bronchi caused an enhanced tritium outflow that was abolished by removal of extracellular calcium or by tetrodotoxin. HPLC analysis of the medium collected before, during, and after transmural stimulation showed that the electrically stimulated tritium outflow represented exclusively [3H]acetylcholine, whereas the outflow of [3H]choline and [3H]phosphorylcholine was not affected by electrical stimulation. Oxotremorine (0.1 and 1 mumol/L) inhibited evoked [3H]acetylcholine release in a concentration-related manner, whereas atropine (0.03 mumol/L) enhanced evoked [3H]acetylcholine release. Inactivation of cyclooxygenase activity by 3 mumol/L of indomethacin did not impair the inhibitory effect of 0.1 or 1 mumol/L of oxotremorine. In conclusion, the present experiments indicate a considerable cholinergic innervation of human large and small airways.
The sensitivity of a PCR based biochip assay relies on the efficiency of PCR amplicons in binding to the microarray spots. The essential factor determining the sensitivity is the amount of single stranded (ss) amplicons available for biochip hybridization. Asymmetric PCR can generate ss-amplicons depending on the ratio of primers used in the amplification process, but this process is often inefficient. We report a novel variant of PCR called the Asymmetric Exponential and Linear Amplification (AELA) which can overcome these issues and generate large amounts of single stranded amplicons. AELA-PCR introduces an amplification strategy that makes use of both exponential and linear amplification of the target nucleic acid. This is done by specifically designed primers and choice of adequate thermal profiles. In conventional PCR with a classical thermal profile, these specifically designed primers will work normally and contribute to an exponential increase of amplicons. A designed sequence extension of one of the primers and a very specific thermal profile, will result in a situation that the extended primer will be the only functional one for amplification, resulting in a linear phase of the amplification process. That is why during this step only one of the two strands of the target is amplified linearly and no longer exponentially. The result of the whole process is an amplification product enriched very strongly in one of the two single strands of the target. These adaptions in PCR are particularly favorable where the generation of ss-DNA/RNA is required. We demonstrate the higher biochip sensitivity of AELA-PCR compared to conventional amplification methods with an example of the Staphylococcus aureus detection on a DNA oligonucleotide microarray.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.