ABSTRACT:In precision agriculture detailed geoinformation on plant and soil properties plays an important role. Laser scanning already has been used to describe in-field variations of plant growth in 3D and over time and can serve as valuable complementary topographic data set for remote sensing, such as deriving soil properties from hyperspectral sensors. In this study full-waveform laser scanning data acquired with a Riegl VZ-400 instrument is used to classify 3D point clouds into post-harvest straw residues and bare soil. A workflow for point cloud based classification is presented using radiometric and geometric point features. A radiometric correction is performed by using a range-correction function f(r), which is derived from lab experiments with a reference target of known reflectance. Thereafter, the corrected signal amplitude and local height features are explored with respect to the target classes. The following procedure includes feature calculation, decision tree analysis, point cloud classification and finally result validation using detailed classified reference RGB images. The classification tree separates the classes of harvest residues and bare soil with an accuracy of 96% by using geometric and radiometric features. The LiDAR-derived harvest residue coverage value of 75% lies in accordance with the image-based reference (coverage of 68%). The results indicate the high potential of radiometric features for natural surface classification, particularly in combination with geometric features.
ABSTRACT:Remote sensing is a suitable tool for estimating the spatial variability of crop canopy characteristics, such as canopy chlorophyll content (CCC) and green ground cover (GGC%), which are often used for crop productivity analysis and site-specific crop management. Empirical relationships exist between different vegetation indices (VI) and CCC and GGC% that allow spatial estimation of canopy characteristics from remote sensing imagery. However, the use of VIs is not suitable for an operational production of CCC and GGC% maps due to the limited transferability of derived empirical relationships to other regions. Thus, the operational value of crop status maps derived from remotely sensed data would be much higher if there was no need for reparametrization of the approach for different situations. This paper reports on the suitability of high-resolution RapidEye data for estimating crop development status of winter wheat over the growing season, and demonstrates two different approaches for mapping CCC and GGC%, which do not rely on empirical relationships. The final CCC map represents relative differences in CCC, which can be quickly calibrated to field specific conditions using SPAD chlorophyll meter readings at a few points. The prediction model is capable of predicting SPAD readings with an average accuracy of 77%. The GGC% map provides absolute values at any point in the field. A high R² value of 80% was obtained for the relationship between estimated and observed GGC%. The mean absolute error for each of the two acquisition dates was 5.3% and 8.7%, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.