Progression of prostate cancer following castration is associated with increased androgen receptor (AR) expression and signaling despite AR blockade. Recent studies suggest that these activities are due to the generation of constitutively active AR splice variants, but the mechanisms by which these splice variants could mediate such effects are not fully understood. Here we have identified what we believe to be a novel human AR splice variant in which exons 5, 6, and 7 are deleted (AR v567es ) and demonstrated that this variant can contribute to cancer progression in human prostate cancer xenograft models in mice following castration. We determined that, in human prostate cancer cell lines, AR v567es functioned as a constitutively active receptor, increased expression of full-length AR (AR fl ), and enhanced the transcriptional activity of AR. In human xenografts, human prostate cancer cells transfected with AR v567es cDNA formed tumors that were resistant to castration. Furthermore, the ratio of AR v567es to AR fl expression within the xenografts positively correlated with resistance to castration. Importantly, we also detected AR v567es frequently in human prostate cancer metastases. In summary, these data indicate that constitutively active AR splice variants can contribute to the development of castration-resistant prostate cancers and may serve as biomarkers for patients who are likely to suffer from early recurrence and are candidates for therapies directly targeting the AR rather than ligand.
SUMMARY Androgen receptor (AR) signaling is a distinctive feature of prostate carcinoma (PC) and represents the major therapeutic target for treating metastatic prostate cancer (mPC). Though highly effective, AR antagonism can produce tumors that bypass a functional requirement for AR, often through neuroendocrine (NE) transdifferentiation. Through the molecular assessment of mPCs over two decades, we find a phenotypic shift has occurred in mPC with the emergence of an AR-null NE-null phenotype. These “double-negative” PCs are notable for elevated FGF and MAPK pathway activity, which can bypass AR dependence. Pharmacological inhibitors of MAPK or FGFR repressed the growth of double-negative PCs in vitro and in vivo. Our results indicate that FGF/MAPK blockade may be particularly efficacious against mPCs with an AR-null phenotype.
resulting in the suppression of AR target genes and clinical remissions that generally last several years (1). However, ADT is not curative. PC recurs as castration-resistant prostate cancer (CRPC), typically with reactivated AR signaling. Second-generation AR pathway inhibitors (ARIs), such as enzalutamide (ENZ) and abiraterone (ABI), were designed to further repress AR signaling and are primarily used to treat CRPC. Although these agents extend survival, durable complete responses are rare and these therapies also eventually fail (2, 3). Typically, the vast majority of metastatic CRPC (mCRPC) tumors progress with rising prostate-specific antigen (PSA/KLK3) levels despite standard of care treatment. Moreover, most mCRPC tumors are adenocarcinomas, which have robust AR program activity (4). Though rigorous epidemiological data are lacking, recent studies report that a substantial number of mCRPC tumors progressing on ARIs have lost AR signaling (5). Paralleling increased use of ARIs has been an increase in the proportion of treatment-resistant CRPC metastases that have AR-null phenotypes, i.e. tumors with diffuse small cell or neuroendocrine (NE) characteristics (SCNPC) or the recently described double-negative (DNPC) phenotype that lacks both NE and AR activity (5). A contemporary study evaluating the histology and molecular characteristics of 202 men with mCRPC found that 17% of the evaluable tumors were classified as SCNPC and this phenotype was associated with short-Metastatic castration-resistant prostate cancer (mCRPC) is a heterogeneous disease with diverse drivers of disease progression and mechanisms of therapeutic resistance. We conducted deep phenotypic characterization of CRPC metastases and patient-derived xenograft (PDX) lines using whole-genome RNA sequencing, gene set enrichment analysis, and immunohistochemistry. Our analyses revealed 5 mCRPC phenotypes based on the expression of well-characterized androgen receptor (AR) or neuroendocrine (NE) genes: AR-high tumors (ARPC), AR-low tumors (ARLPC), amphicrine tumors composed of cells coexpressing AR and NE genes (AMPC), double-negative tumors (i.e., AR-/NE-; DNPC), and tumors with small cell or NE gene expression without AR activity (SCNPC). RE1 silencing transcription factor (REST) activity, which suppresses NE gene expression, was lost in AMPC and SCNPC PDX models. However, knockdown of REST in cell lines revealed that attenuated REST activity drives the AMPC phenotype but is not sufficient for SCNPC conversion. We also identified a subtype of DNPC tumors with squamous differentiation and generated an encompassing 26-gene transcriptional signature that distinguished the 5 mCRPC phenotypes. Together, our data highlight the central role of AR and REST in classifying treatment-resistant mCRPC phenotypes. These molecular classifications could potentially guide future therapeutic studies and clinical trial design.
Background Metastatic prostate cancer is a common and lethal disease for which there are no therapies that produce cures or long-term durable remissions. Clinically relevant preclinical models are needed to increase our understanding of the biology of this malignancy and to evaluate new agents that might provide effective treatment. Our objective was to establish and characterize patient-derived xenografts (PDXs) from advanced prostate cancer (PC) to investigation of biology and evaluation of new treatment modalities. Methods Samples of advanced PC obtained from surgery or from metastases collected at time of death were implanted into immunocompromised mice to establish PDXs. Established LuCaP PDXs were propagated in vivo. Genomic, transcriptomic and STR profiles were generated. Responses to androgen deprivation and docetaxel in vivo were characterized. Results We established multiple PDXs (LuCaP series), which represent the major genomic and phenotypic features of the disease in humans, including amplification of androgen receptor, PTEN deletion, TP53 deletion and mutation, RB1 loss, and TMPRSS2-ERG rearrangements, SPOP mutation, hypermutation due to MSH2/MSH6 genomic aberrations, and BRCA2 loss. The PDX models also exhibited variation in intra-tumoral androgen levels. Our in vivo results show heterogeneity of response to androgen deprivation and docetaxel, standard therapies for advanced PC, similar to the responses of patients to these treatments. Conclusions The LuCaP PDX series reflects the diverse molecular composition of human castration-resistant PC and allows for hypothesis-driven cause-and-effect studies of mechanisms underlying treatment response and resistance.
Purpose Prostate cancer translational research has been hampered by the lack of comprehensive and tractable models that represent the genomic landscape of clinical disease. Metastatic castrate-resistant prostate cancer (mCRPC) patient-derived xenografts (PDXs) recapitulate the genetic and phenotypic diversity of the disease. We sought to establish a representative, preclinical platform of PDX-derived organoids that is experimentally facile for high throughput and mechanistic analysis. Experimental Design Using 20 models from the LuCaP mCRPC PDX cohort, including adenocarcinoma and neuroendocrine lineages, we systematically tested > 20 modifications to prostate organoid conditions. Organoids were evaluated for genomic and phenotypic stability and continued reliance on the AR signaling pathway. The utility of the platform as a genotype-dependent model of drug sensitivity was tested with olaparib and carboplatin. Results All PDX models proliferated as organoids in culture. Greater than fifty percent could be continuously cultured long-term in modified conditions; however, none of the PDXs could be established long-term as organoids under previously-reported conditions. Additionally, the modified conditions improved the establishment of patient biopsies over current methods. The genomic heterogeneity of the PDXs, was conserved in organoids. Lineage markers and transcriptomes were maintained between PDXs and organoids. Dependence on AR signaling, was preserved in adenocarcinoma organoids, replicating a dominant characteristic of CRPC. Finally, we observed maximum cytotoxicity to the PARP inhibitor olaparib in BRCA2−/− organoids, similar to responses observed in patients. Conclusions The LuCaP PDX/organoid models provide an expansive, genetically-characterized platform to investigate mechanisms of pathogenesis as well as therapeutic responses and their molecular correlates in mCRPC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.